Suppr超能文献

具有不同β亚基异构体的Snf1激酶在调节单倍体侵袭性生长中发挥着不同的作用。

Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth.

作者信息

Vyas Valmik K, Kuchin Sergei, Berkey Cristin D, Carlson Marian

机构信息

Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, New York, New York 10032,USA.

出版信息

Mol Cell Biol. 2003 Feb;23(4):1341-8. doi: 10.1128/MCB.23.4.1341-1348.2003.

Abstract

The Snf1 protein kinase of Saccharomyces cerevisiae has been shown to have a role in regulating haploid invasive growth in response to glucose depletion. Cells contain three forms of the Snf1 kinase, each with a different beta-subunit isoform, either Gal83, Sip1, or Sip2. We present evidence that different Snf1 kinases play distinct roles in two aspects of invasive growth, namely, adherence to the agar substrate and filamentation. The Snf1-Gal83 form of the kinase is required for adherence, whereas either Snf1-Gal83 or Snf1-Sip2 is sufficient for filamentation. Genetic evidence indicates that Snf1-Gal83 affects adherence by antagonizing Nrg1- and Nrg2-mediated repression of the FLO11 flocculin and adhesin gene. In contrast, the mechanism(s) by which Snf1-Gal83 and Snf1-Sip2 affect filamentation is independent of FLO11. Thus, the Snf1 kinase regulates invasive growth by at least two distinct mechanisms.

摘要

酿酒酵母的Snf1蛋白激酶已被证明在响应葡萄糖耗尽时调节单倍体侵袭性生长中发挥作用。细胞含有三种形式的Snf1激酶,每种都有不同的β亚基异构体,即Gal83、Sip1或Sip2。我们提供的证据表明,不同的Snf1激酶在侵袭性生长的两个方面发挥着不同的作用,即对琼脂底物的粘附和丝状化。激酶的Snf1-Gal83形式是粘附所必需的,而Snf1-Gal83或Snf1-Sip2对于丝状化都是足够的。遗传证据表明,Snf1-Gal83通过拮抗Nrg1和Nrg2介导的对絮凝蛋白FLO11和粘附素基因的抑制来影响粘附。相比之下,Snf1-Gal83和Snf1-Sip2影响丝状化的机制独立于FLO11。因此,Snf1激酶通过至少两种不同的机制调节侵袭性生长。

相似文献

1
Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth.
Mol Cell Biol. 2003 Feb;23(4):1341-8. doi: 10.1128/MCB.23.4.1341-1348.2003.
2
Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase.
Mol Cell Biol. 2004 Sep;24(18):8255-63. doi: 10.1128/MCB.24.18.8255-8263.2004.
7
Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.
Eukaryot Cell. 2010 Jan;9(1):173-83. doi: 10.1128/EC.00267-09. Epub 2009 Nov 6.
9
Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4.
EMBO J. 1999 Dec 1;18(23):6672-81. doi: 10.1093/emboj/18.23.6672.

引用本文的文献

1
Fungal biofilm formation and its regulatory mechanism.
Heliyon. 2024 Jun 12;10(12):e32766. doi: 10.1016/j.heliyon.2024.e32766. eCollection 2024 Jun 30.
2
Neo-functionalization in : a novel Nrg1-Rtg3 chimeric transcriptional modulator is essential to maintain mitochondrial DNA integrity.
R Soc Open Sci. 2023 Nov 1;10(11):231209. doi: 10.1098/rsos.231209. eCollection 2023 Nov.
3
The Flo Adhesin Family.
Pathogens. 2021 Oct 28;10(11):1397. doi: 10.3390/pathogens10111397.
6
Conventional and emerging roles of the energy sensor Snf1/AMPK in .
Microb Cell. 2018 Sep 29;5(11):482-494. doi: 10.15698/mic2018.11.655.
7
Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth.
Curr Genet. 2019 Feb;65(1):119-125. doi: 10.1007/s00294-018-0874-0. Epub 2018 Aug 12.
8
Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes.
PLoS Genet. 2018 Jun 25;14(6):e1007493. doi: 10.1371/journal.pgen.1007493. eCollection 2018 Jun.
9
Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review.
NPJ Syst Biol Appl. 2015 Oct 22;1:15007. doi: 10.1038/npjsba.2015.7. eCollection 2015.
10
The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress.
Cell Signal. 2016 Dec;28(12):1881-1893. doi: 10.1016/j.cellsig.2016.08.016. Epub 2016 Aug 31.

本文引用的文献

1
The roles of bud-site-selection proteins during haploid invasive growth in yeast.
Mol Biol Cell. 2002 Sep;13(9):2990-3004. doi: 10.1091/mbc.e02-03-0151.
4
5
NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans.
EMBO J. 2001 Sep 3;20(17):4742-52. doi: 10.1093/emboj/20.17.4742.
7
Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae.
J Biol Chem. 2001 Sep 21;276(38):36000-7. doi: 10.1074/jbc.M103509200. Epub 2001 Jul 18.
10
NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae.
BMC Genet. 2001;2:5. doi: 10.1186/1471-2156-2-5. Epub 2001 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验