Kamunde Collins N, Pyle Greg G, McDonald D Gordon, Wood Chris M
Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
Environ Toxicol Chem. 2003 Feb;22(2):342-50.
Juvenile rainbow trout were fed diets containing control (0.26 mmol/g) or elevated (1.3 mmol/g) dietary Na+ in combination with either background (19 nmol/L) or moderately elevated levels (55 or 118 nmol/L) of waterborne Cu for 21 d. Unidirectional waterborne Na+ uptake rates (measured with 22Na) were up to four orders of magnitude higher than those of Cu (measured with 64Cu). Chronic exposure to elevated dietary Na+ alone or in combination with elevated waterborne Cu decreased whole-body uptake rates of waterborne Na+ and Cu. Accumulation of new Cu and Na+ at the gills was positively and highly significantly correlated and responded to the experimental treatments in a similar fashion, suggesting that Na+ and Cu have common branchial uptake pathways and that dietary Na+ preexposure modifies these pathways. Chronic exposure to elevated waterborne Cu significantly increased Cu concentrations in the liver but caused only modest increases in total Cu concentrations in the whole body and gill. Chronic exposure to elevated dietary Na+ slightly decreased whole-body Cu concentration on day 14 and greatly reduced liver Cu concentration on days 14 and 21; new Cu accumulation in whole-body, gill, and internal organs was reduced on all days. Chronic exposure to elevated waterborne Cu or dietary Na+ alone reduced short-term gill Cu binding at low waterborne Cu concentrations. At high waterborne Cu concentrations, chronic exposure to elevated waterborne Cu had no effect, while elevated dietary Na+ increased Cu binding to the gills. Combined chronic exposure to elevated dietary Na+ and waterborne Cu decreased gill Cu binding over the entire range of Cu concentrations tested. Clearly, chronic exposure to elevated dietary Na+ and waterborne Cu appears to modify gill Cu-binding characteristics and may be important considerations in future development of a chronic biotic ligand model for Cu.
将幼年虹鳟鱼投喂含有对照水平(0.26 mmol/g)或升高水平(1.3 mmol/g)的日粮 Na⁺,并结合背景水平(19 nmol/L)或适度升高水平(55 或 118 nmol/L)的水体铜,持续 21 天。单向水体 Na⁺摄取率(用²²Na 测量)比 Cu(用⁶⁴Cu 测量)的摄取率高多达四个数量级。单独长期暴露于升高的日粮 Na⁺或与升高的水体铜联合暴露,均会降低水体 Na⁺和 Cu 的全身摄取率。鳃上新 Cu 和 Na⁺的积累呈正相关且高度显著相关,并以类似方式对实验处理作出反应,这表明 Na⁺和 Cu 具有共同的鳃摄取途径,并且日粮 Na⁺预暴露会改变这些途径。长期暴露于升高的水体铜会显著增加肝脏中的 Cu 浓度,但仅使全身和鳃中的总 Cu 浓度适度增加。长期暴露于升高的日粮 Na⁺会在第 14 天略微降低全身 Cu 浓度,并在第 14 天和第 21 天大大降低肝脏 Cu 浓度;全身、鳃和内脏器官中 Cu 的新积累在所有天数均减少。单独长期暴露于升高的水体铜或日粮 Na⁺会降低低水体铜浓度下的短期鳃 Cu 结合。在高水体铜浓度下,长期暴露于升高的水体铜没有影响,而升高的日粮 Na⁺会增加 Cu 与鳃的结合。联合长期暴露于升高的日粮 Na⁺和水体铜会在测试的整个 Cu 浓度范围内降低鳃 Cu 结合。显然,长期暴露于升高的日粮 Na⁺和水体铜似乎会改变鳃 Cu 结合特性,并且可能是未来开发 Cu 的慢性生物配体模型时的重要考虑因素。