Suppr超能文献

急性冠脉综合征后病情稳定患者90天预后的预测因素

Predictors of 90-day outcome in patients stabilized after acute coronary syndromes.

作者信息

Newby L K, Bhapkar M V, White H D, Topol E J, Dougherty F C, Harrington R A, Smith M C, Asarch L F, Califf R M

机构信息

Duke Clinical Research Institute, Durham, NC 27715-7969, USA.

出版信息

Eur Heart J. 2003 Jan;24(2):172-81. doi: 10.1016/s0195-668x(02)00325-1.

Abstract

AIMS

We investigated predictors of 90-day risk among patients surviving the early period after an acute coronary syndrome (ACS).

METHODS AND RESULTS

The study population included 15 904 stabilized ST-segment elevation or non-ST-segment elevation ACS patients randomized in SYMPHONY and 2nd SYMPHONY. We developed risk models for death, death or myocardial infarction (MI), and death, MI, or severe recurrent ischaemia (SRI) using Cox proportional-hazards techniques. Demographic, history, and pre-randomization clinical and medication variables were tested. Validation techniques included development of individual trial models, backward elimination and bootstrapping. Of 118 variables, 17 independently predicted mortality. The strongest associations included greater age (chi(2)=31.1), higher randomization heart rate (chi(2)=27.4), and heart failure (HF) variables (HF between qualifying event and randomization, chi(2)=21.8; history of HF, chi(2)=12.2). Higher creatinine clearance (chi(2)=17.7) and percutaneous coronary intervention between qualifying event and randomization (chi(2)=11.1) most strongly predicted lower risk. Similar characteristics entered the double and triple composite models, but HF variables and age less strongly predicted these end-points.

CONCLUSIONS

In patients stabilized after ACS, those at highest risk over the next 90 days can be identified. Typical clinical markers are better at identifying risk of death than non-fatal MI or SRI. Novel risk markers are needed for these outcomes.

摘要

目的

我们调查了急性冠状动脉综合征(ACS)早期存活患者90天风险的预测因素。

方法与结果

研究人群包括15904例在SYMPHONY和第二次SYMPHONY试验中随机分组的病情稳定的ST段抬高型或非ST段抬高型ACS患者。我们使用Cox比例风险技术建立了死亡、死亡或心肌梗死(MI)以及死亡、MI或严重复发性缺血(SRI)的风险模型。对人口统计学、病史以及随机分组前的临床和用药变量进行了检测。验证技术包括建立单个试验模型、向后剔除法和自抽样法。在118个变量中,17个独立预测死亡率。最强的关联因素包括年龄较大(χ²=31.1)、随机分组时心率较高(χ²=27.4)以及心力衰竭(HF)变量(符合条件事件与随机分组之间存在HF,χ²=21.8;HF病史,χ²=12.2)。肌酐清除率较高(χ²=17.7)以及符合条件事件与随机分组之间进行经皮冠状动脉介入治疗(χ²=11.1)最强烈地预测较低风险。类似的特征进入了双重和三重复合模型,但HF变量和年龄对这些终点的预测作用较弱。

结论

在ACS后病情稳定的患者中,可以识别出未来90天内风险最高的患者。典型的临床标志物在识别死亡风险方面比非致命性MI或SRI更好。这些结局需要新的风险标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验