Norman Derek P G, Chung Sang J, Verdine Gregory L
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
Biochemistry. 2003 Feb 18;42(6):1564-72. doi: 10.1021/bi026823d.
Members of the HhH-GPD superfamily of DNA glycosylases are responsible for the recognition and removal of damaged nucleobases from DNA. The hallmark of these proteins is a motif comprising a helix-hairpin-helix followed by a Gly/Pro-rich loop and terminating in an invariant, catalytically essential aspartic acid residue. In this study, we have probed the role of this Asp in human 8-oxoguanine DNA glycosylase (hOgg1) by mutating it to Asn (D268N), Glu (D268E), and Gln (D268Q). We show that this aspartate plays a dual role, acting both as an N-terminal alpha-helix cap and as a critical residue for catalysis of both base excision and DNA strand cleavage by hOgg1. Mutation of this residue to asparagine, another helix-capping residue, preserves stability of the protein while drastically reducing enzymatic activity. A crystal structure of this mutant is the first to reveal the active site nucleophile Lys249 in the presence of lesion-containing DNA; this structure offers a tantalizing suggestion that base excision may occur by cleavage of the glycosidic bond and then attachment of Lys249. Mutation of the aspartic acid to glutamine and glutamic acid destabilizes the protein fold to a significant extent but, surprisingly, preserves catalytic activity. Crystal structures of these mutants complexed with an unreactive abasic site in DNA reveal these residues to adopt a sterically disfavored helix-capping conformation.
DNA糖基化酶的HhH-GPD超家族成员负责识别并去除DNA中受损的核碱基。这些蛋白质的标志是一个基序,该基序由一个螺旋-发夹-螺旋结构组成,随后是一个富含甘氨酸/脯氨酸的环,并以一个不变的、催化必需的天冬氨酸残基结尾。在本研究中,我们通过将人8-氧代鸟嘌呤DNA糖基化酶(hOgg1)中的天冬氨酸突变为天冬酰胺(D268N)、谷氨酸(D268E)和谷氨酰胺(D268Q),探究了该天冬氨酸的作用。我们发现,该天冬氨酸发挥双重作用,既作为N端α-螺旋帽,又作为hOgg1进行碱基切除和DNA链切割催化的关键残基。将该残基突变为另一个螺旋帽残基天冬酰胺,可保持蛋白质的稳定性,同时大幅降低酶活性。该突变体的晶体结构首次揭示了在含有损伤的DNA存在下活性位点亲核试剂赖氨酸249的情况;该结构提供了一个诱人的线索,即碱基切除可能通过糖苷键的断裂然后赖氨酸249的附着而发生。将天冬氨酸突变为谷氨酰胺和谷氨酸会在很大程度上使蛋白质折叠不稳定,但令人惊讶的是,仍保留催化活性。这些与DNA中无反应性的无碱基位点复合的突变体的晶体结构显示,这些残基采用了空间不利的螺旋帽构象。