Suppr超能文献

布氏锥虫血流期糖基磷脂酰肌醇依赖性蛋白转运

Glycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei.

作者信息

Triggs Veronica P, Bangs James D

机构信息

Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA.

出版信息

Eukaryot Cell. 2003 Feb;2(1):76-83. doi: 10.1128/EC.2.1.76-83.2003.

Abstract

We have previously demonstrated that glycosylphosphatidylinositol (GPI) anchors strongly influence protein trafficking in the procyclic insect stage of Trypanosoma brucei (M. A. McDowell, D. A. Ransom, and J. D. Bangs, Biochem. J. 335:681-689, 1998), where GPI-minus variant surface glycoprotein (VSG) reporters have greatly reduced rates of endoplasmic reticulum (ER) exit but are ultimately secreted. We now demonstrate that GPI-dependent trafficking also occurs in pathogenic bloodstream trypanosomes. However, unlike in procyclic trypanosomes, truncated VSGs lacking C-terminal GPI-addition signals are not secreted but are mistargeted to the lysosome and degraded. Failure to export these reporters is not due to a deficiency in secretion of these cells since the N-terminal ATPase domain of the endogenous ER protein BiP is efficiently secreted from transgenic cell lines. Velocity sedimentation experiments indicate that GPI-minus VSG dimerizes similarly to wild-type VSG, suggesting that degradation is not due to ER quality control mechanisms. However, GPI-minus VSGs are fully protected from degradation by the cysteine protease inhibitor FMK024, a potent inhibitor of the major lysosomal protease trypanopain. Immunofluorescence of cells incubated with FMK024 demonstrates that GPI-minus VSG colocalizes with p67, a lysosomal marker. These data suggest that in the absence of a GPI anchor, VSG is mistargeted to the lysosome and subsequently degraded. Our findings indicate that GPI-dependent transport is a general feature of secretory trafficking in both stages of the life cycle. A working model is proposed in which GPI valence regulates progression in the secretory pathway of bloodstream stage trypanosomes.

摘要

我们之前已经证明,糖基磷脂酰肌醇(GPI)锚定对布氏锥虫前循环昆虫阶段的蛋白质运输有强烈影响(M.A.麦克道尔、D.A.兰塞姆和J.D.班斯,《生物化学杂志》335:681 - 689,1998),在该阶段,缺少GPI的变异表面糖蛋白(VSG)报告基因的内质网(ER)出口速率大幅降低,但最终仍会分泌。我们现在证明,GPI依赖的运输也发生在致病性血流锥虫中。然而,与前循环锥虫不同的是,缺少C端GPI添加信号的截短VSG不会被分泌,而是被错误靶向到溶酶体并被降解。这些报告基因无法输出并非由于这些细胞分泌功能缺陷,因为内源性ER蛋白BiP的N端ATP酶结构域能从转基因细胞系中有效分泌。速度沉降实验表明,缺少GPI的VSG与野生型VSG类似地形成二聚体,这表明降解不是由于ER质量控制机制。然而,缺少GPI的VSG完全受到半胱氨酸蛋白酶抑制剂FMK024的保护而不被降解,FMK024是主要溶酶体蛋白酶锥虫蛋白酶的有效抑制剂。用FMK024处理细胞后的免疫荧光显示,缺少GPI的VSG与溶酶体标志物p67共定位。这些数据表明,在没有GPI锚定的情况下,VSG被错误靶向到溶酶体并随后被降解。我们的研究结果表明,GPI依赖的运输是生命周期两个阶段分泌运输的一个普遍特征。我们提出了一个工作模型,其中GPI价态调节血流阶段锥虫分泌途径中的进程。

相似文献

1
Glycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei.
Eukaryot Cell. 2003 Feb;2(1):76-83. doi: 10.1128/EC.2.1.76-83.2003.
2
Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei.
Biochem J. 1998 Nov 1;335 ( Pt 3)(Pt 3):681-9. doi: 10.1042/bj3350681.
3
GPI valence and the fate of secretory membrane proteins in African trypanosomes.
J Cell Sci. 2005 Dec 1;118(Pt 23):5499-511. doi: 10.1242/jcs.02667. Epub 2005 Nov 15.
4
Controlling transferrin receptor trafficking with GPI-valence in bloodstream stage African trypanosomes.
PLoS Pathog. 2017 May 1;13(5):e1006366. doi: 10.1371/journal.ppat.1006366. eCollection 2017 May.
7
8
The role of glycosylphosphatidylinositol phospholipase C in membrane trafficking in Trypanosoma brucei.
Mol Biochem Parasitol. 2021 Sep;245:111409. doi: 10.1016/j.molbiopara.2021.111409. Epub 2021 Aug 4.
9
Life Stage-Specific Cargo Receptors Facilitate Glycosylphosphatidylinositol-Anchored Surface Coat Protein Transport in .
mSphere. 2017 Jul 12;2(4). doi: 10.1128/mSphere.00282-17. eCollection 2017 Jul-Aug.

引用本文的文献

1
Multifunctional roles of Sec13 paralogues in the euglenozoan .
Open Biol. 2025 Feb;15(2):240324. doi: 10.1098/rsob.240324. Epub 2025 Feb 26.
2
Multifunctional Roles of Sec13 Paralogues in the Euglenozoan .
bioRxiv. 2024 Dec 4:2024.12.03.626618. doi: 10.1101/2024.12.03.626618.
4
Fatty acid uptake in : Host resources and possible mechanisms.
Front Cell Infect Microbiol. 2022 Nov 21;12:949409. doi: 10.3389/fcimb.2022.949409. eCollection 2022.
5
Stage-Specific COPII-Mediated Cargo Selectivity in African Trypanosomes.
mSphere. 2022 Aug 31;7(4):e0018822. doi: 10.1128/msphere.00188-22. Epub 2022 Jun 21.
6
Turnover of Variant Surface Glycoprotein in Trypanosoma brucei Is Not Altered in Response to Specific Silencing.
mSphere. 2022 Aug 31;7(4):e0012222. doi: 10.1128/msphere.00122-22. Epub 2022 Jun 21.
7
VSG mRNA levels are regulated by the production of functional VSG protein.
Mol Biochem Parasitol. 2021 Jan;241:111348. doi: 10.1016/j.molbiopara.2020.111348. Epub 2020 Dec 19.
8
Evolution of Antigenic Variation in African Trypanosomes: Variant Surface Glycoprotein Expression, Structure, and Function.
Bioessays. 2018 Dec;40(12):e1800181. doi: 10.1002/bies.201800181. Epub 2018 Oct 29.
9
Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei.
Mol Biol Cell. 2018 Oct 1;29(20):2397-2409. doi: 10.1091/mbc.E18-06-0380. Epub 2018 Aug 9.
10
Rab11 mediates selective recycling and endocytic trafficking in Trypanosoma brucei.
Traffic. 2018 Jun;19(6):406-420. doi: 10.1111/tra.12565. Epub 2018 Apr 19.

本文引用的文献

1
Endocytosis and secretion in trypanosomatid parasites - Tumultuous traffic in a pocket.
Trends Cell Biol. 1997 Jan;7(1):27-33. doi: 10.1016/S0962-8924(97)10046-0.
2
ER-associated degradation in protein quality control and cellular regulation.
Curr Opin Cell Biol. 2002 Aug;14(4):476-82. doi: 10.1016/s0955-0674(02)00358-7.
3
Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei.
J Cell Sci. 2002 Aug 15;115(Pt 16):3253-63. doi: 10.1242/jcs.115.16.3253.
5
Secretory pathway of trypanosomatid parasites.
Microbiol Mol Biol Rev. 2002 Mar;66(1):122-54; table of contents. doi: 10.1128/MMBR.66.1.122-154.2002.
6
9
GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida.
FEBS Lett. 2001 Feb 23;491(1-2):148-53. doi: 10.1016/s0014-5793(01)02172-x.
10
Protein sorting upon exit from the endoplasmic reticulum.
Cell. 2001 Jan 26;104(2):313-20. doi: 10.1016/s0092-8674(01)00215-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验