Eckhardt Klaus, Roth Patrick, Günter Thomas, Schmidt Sascha, Feuerstein Thomas J
Sektion Klinische Neuropharmakologie, Neurologische Universitätsklinik Freiburg, Breisacherstrasse 64, 79106, Freiburg, Germany.
Naunyn Schmiedebergs Arch Pharmacol. 2003 Feb;367(2):168-75. doi: 10.1007/s00210-002-0664-5. Epub 2003 Jan 18.
To test whether prolonged uptake blockade can lead to changes in the function of ATP-dependent potassium (K(ATP)) channels we investigated in rat neocortex slices the effects of K(ATP) channel blockers on electrically evoked [(3)H]-noradrenaline ([(3)H]-NA) overflow after short- (45 min) and long-term (210 min) exposure to the NA uptake blockers (+)-oxaprotiline or desipramine (1 microM each). The K(ATP) channel blocker glibenclamide (1 micro M) increased the evoked [(3)H]-NA overflow by 42% after short-term uptake inhibition. This effect was confirmed by tolbutamide and glipizide, two other K(ATP) channel antagonists. The evoked [(3)H]-NA overflow was enhanced by 73% following short-term uptake blockade (15 min) and by 110% following long-term blockade (180 min). After long-term blockade (210 min), however, glibenclamide failed to further enhance the overflow of [(3)H]-NA. The alpha(2)-autoreceptor-mediated feedback control was not involved in the glibenclamide-induced increase in [(3)H]-NA overflow after short-term uptake blockade or in the increase in [(3)H]-NA overflow due to long-term uptake blockade per se. The Na(+)/K(+)-ATPase inhibitor ouabain diminished the glibenclamide-induced enhancement of [(3)H]-NA overflow after short-term uptake blockade, suggesting that an operative Na(+)/K(+)-ATPase is the prerequisite of activation of K(ATP) channels. These results suggest that short-term uptake blockade activates the Na(+)/K(+)-ATPase, thereby reducing intracellular ATP which allows transient opening of K(ATP) channels. Activation of the Na(+)/K(+)-ATPase may increase the Na(+) gradient, probably over the membrane of noradrenergic nerve terminals. The resulting hyperpolarisation leads to inhibition of the evoked overflow which can be reversed, i.e. enhanced, by K(ATP) channel blockers. In contrast, longer lasting uptake blockade seems to reduce the activity of the Na(+)/K(+)-ATPase and hence the consumption of ATP. As a consequence, reduced Na(+) and K(+) gradients may facilitate transmitter release. Closure of K(ATP) channels by accumulating ATP may further promote membrane depolarisation and transmitter release. The unexpected effect of longer exposure to uptake blockers could be somehow related to the clinical time latency of the antidepressant efficacy of monoamine uptake blockers.
为了测试长时间的摄取阻断是否会导致ATP依赖性钾通道(K(ATP)通道)功能的变化,我们在大鼠新皮质切片中研究了K(ATP)通道阻滞剂对在短时间(45分钟)和长时间(210分钟)暴露于去甲肾上腺素(NA)摄取阻滞剂(+)-奥普替林或地昔帕明(各1微摩尔)后电诱发的[³H]-去甲肾上腺素([³H]-NA)溢出的影响。K(ATP)通道阻滞剂格列本脲(1微摩尔)在短期摄取抑制后使诱发的[³H]-NA溢出增加了42%。这种效应得到了另外两种K(ATP)通道拮抗剂甲苯磺丁脲和格列吡嗪的证实。在短期摄取阻断(15分钟)后,诱发的[³H]-NA溢出增加了73%,在长期阻断(180分钟)后增加了110%。然而,在长期阻断(210分钟)后,格列本脲未能进一步增强[³H]-NA的溢出。α₂-自受体介导的反馈控制与短期摄取阻断后格列本脲诱导的[³H]-NA溢出增加或长期摄取阻断本身导致的[³H]-NA溢出增加无关。钠/钾-ATP酶抑制剂哇巴因在短期摄取阻断后减弱了格列本脲诱导的[³H]-NA溢出增强,表明有活性的钠/钾-ATP酶是激活K(ATP)通道的前提条件。这些结果表明,短期摄取阻断激活了钠/钾-ATP酶,从而降低了细胞内ATP,这使得K(ATP)通道短暂开放。钠/钾-ATP酶的激活可能会增加钠梯度,可能是在去甲肾上腺素能神经末梢膜上。由此产生的超极化导致诱发溢出的抑制,而这种抑制可以被K(ATP)通道阻滞剂逆转,即增强。相比之下,持续时间更长的摄取阻断似乎会降低钠/钾-ATP酶的活性,从而减少ATP的消耗。因此,降低的钠和钾梯度可能会促进递质释放。通过积累ATP使K(ATP)通道关闭可能会进一步促进膜去极化和递质释放。长时间暴露于摄取阻滞剂的意外效应可能与单胺摄取阻滞剂抗抑郁疗效的临床时间潜伏期有某种关联。