Suppr超能文献

使用整合椎体生长调节的生物力学模型模拟青少年特发性脊柱侧凸的渐进性畸形。

Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.

作者信息

Villemure I, Aubin C E, Dansereau J, Labelle H

机构信息

Research Center, Sainte-Justine Hospital, University of Montreal Biomedical Engineering Institute, Centreville Montreal, Quebec, Canada.

出版信息

J Biomech Eng. 2002 Dec;124(6):784-90. doi: 10.1115/1.1516198.

Abstract

While the etiology and pathogenesis of adolescent idiopathic scoliosis are still not well understood, it is generally recognized that it progresses within a biomechanical process involving asymmetrical loading of the spine and vertebral growth modulation. This study intends to develop a finite element model incorporating vertebral growth and growth modulation in order to represent the progression of scoliotic deformities. The biomechanical model was based on experimental and clinical observations, and was formulated with variables integrating a biomechanical stimulus of growth modulation along directions perpendicular (x) and parallel (y, z) to the growth plates, a sensitivity factor beta to that stimulus and time. It was integrated into a finite element model of the thoracic and lumbar spine, which was personalized to the geometry of a female subject without spinal deformity. An imbalance of 2 mm in the right direction at the 8th thoracic vertebra was imposed and two simulations were performed: one with only growth modulation perpendicular to growth plates (Sim1), and the other one with additional components in the transverse plane (Sim2). Semi-quantitative characterization of the scoliotic deformities at each growth cycle was made using regional scoliotic descriptors (thoracic Cobb angle and kyphosis) and local scoliotic descriptors (wedging angle and axial rotation of the thoracic apical vertebra). In all simulations, spinal profiles corresponded to clinically observable configurations. The Cobb angle increased non-linearly from 0.3 degree to 34 degrees (Sim1) and 20 degrees (Sim2) from the first to last growth cycle, adequately reproducing the amplifying thoracic scoliotic curve. The sagittal thoracic profile (kyphosis) remained quite constant. Similarly to clinical and experimental observations, vertebral wedging angle of the thoracic apex progressed from 2.6 degrees to 10.7 degrees (Sim1) and 7.8 degrees (Sim2) with curve progression. Concomitantly, vertebral rotation of the thoracic apex increased of 10 degrees (Sim1) and 6 degrees (Sim2) clockwise, adequately reproducing the evolution of axial rotation reported in several studies. Similar trends but of lesser magnitude (Sim2) suggests that growth modulation parallel to growth plates tend to counteract the growth modulation effects in longitudinal direction. Overall, the developed model adequately represents the self-sustaining progression of vertebral and spinal scoliotic deformities. This study demonstrates the feasibility of the modeling approach, and compared to other biomechanical studies of scoliosis it achieves a more complete representation of the scoliotic spine.

摘要

虽然青少年特发性脊柱侧凸的病因和发病机制仍未完全明确,但人们普遍认为,它是在一个涉及脊柱不对称负荷和椎体生长调节的生物力学过程中进展的。本研究旨在建立一个纳入椎体生长和生长调节的有限元模型,以描述脊柱侧凸畸形的进展情况。该生物力学模型基于实验和临床观察结果,通过整合垂直于生长板方向(x)和平行于生长板方向(y、z)的生长调节生物力学刺激、对该刺激的敏感因子β以及时间等变量构建而成。它被整合到一个胸椎和腰椎的有限元模型中,该模型根据一名无脊柱畸形女性受试者的几何形状进行了个性化设置。在第8胸椎处施加了2毫米的右侧方向失衡,并进行了两次模拟:一次仅垂直于生长板进行生长调节(模拟1),另一次在横平面中加入额外的因素(模拟2)。使用区域脊柱侧凸描述符(胸椎Cobb角和后凸)和局部脊柱侧凸描述符(胸椎顶椎的楔形变角和轴向旋转)对每个生长周期的脊柱侧凸畸形进行半定量表征。在所有模拟中,脊柱轮廓均与临床可观察到的形态相符。从第一个生长周期到最后一个生长周期,Cobb角从0.3度非线性增加到34度(模拟1)和20度(模拟2),充分再现了胸椎脊柱侧凸曲线的放大情况。胸椎矢状面轮廓(后凸)保持相当稳定。与临床和实验观察结果相似,随着曲线进展,胸椎顶椎的椎体楔形变角从2.6度增加到10.7度(模拟1)和7.8度(模拟2)。同时,胸椎顶椎的椎体顺时针旋转增加了10度(模拟1)和6度(模拟2),充分再现了多项研究中报道的轴向旋转演变情况。类似趋势但程度较小(模拟2)表明,平行于生长板的生长调节倾向于抵消纵向方向上的生长调节作用。总体而言,所建立的模型充分体现了椎体和脊柱侧凸畸形的自我维持进展情况。本研究证明了该建模方法的可行性,并且与其他脊柱侧凸生物力学研究相比,它对脊柱侧凸脊柱的表现更为完整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验