De Windt L, Burnol A, Montarnal P, van der Lee J
Ecole des Mines de Paris, CIG, 35, rue St Honoré, 77300 Fontainebleau Cedex, France.
J Contam Hydrol. 2003 Mar;61(1-4):303-12. doi: 10.1016/S0169-7722(02)00127-4.
Oxidative dissolution of uranium dioxide (UO(2)) and the subsequent migration of uranium in a subsurface environment and an underground waste disposal have been simulated with reactive transport models. In these systems, hydrogeological and chemical processes are closely entangled and their interdependency has been analyzed in detail, notably with respect to redox reactions, kinetics of mineralogical evolution and hydrodynamic migration of species of interest. Different codes, where among CASTEM, CHEMTRAP and HYTEC, have been used as an intercomparison and verification exercise. Although the agreement between codes is satisfactory, it is shown that the discretization method of the transport equation (i.e. finite elements (FE) versus mixed-hybrid FE and finite differences) and the sequential coupling scheme may lead to systematic discrepancies.
已使用反应性传输模型模拟了二氧化铀(UO₂)的氧化溶解以及随后铀在地下环境和地下废物处置中的迁移。在这些系统中,水文地质和化学过程紧密交织,并且已详细分析了它们的相互依赖性,特别是关于氧化还原反应、矿物演化动力学以及感兴趣物种的水动力迁移。已使用不同的代码(其中包括CASTEM、CHEMTRAP和HYTEC)进行相互比较和验证。尽管代码之间的一致性令人满意,但结果表明,传输方程的离散化方法(即有限元(FE)与混合混合有限元和有限差分)以及顺序耦合方案可能会导致系统差异。