Bailey Christopher P, Trejos Jesus A, Schanne Francis A X, Stanton Patric K
Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
Eur J Neurosci. 2003 Feb;17(4):903-8. doi: 10.1046/j.1460-9568.2003.02507.x.
Data suggest both presynaptic and postsynaptic changes contribute to activity-dependent long-term synaptic plasticity. We have shown that pairing elevation of intracellular [cyclic GMP], using the type V phosphodiesterase inhibitor zaprinast, with inhibition of cyclic AMP-dependent protein kinase (PKA), is sufficient to elicit chemical long-term depression (CLTD) of synaptic transmission at Schaffer collateral-CA1 and mossy fibre-CA3 synapses in rat hippocampus. CLTD does not require synaptic activity, and selective postsynaptic drug injections do not affect it, suggesting it is presynaptically induced and expressed. To directly evaluate this hypothesis, we tested whether CLTD of transmitter release can be expressed in isolated presynaptic nerve terminals. Presynaptic nerve terminals (synaptosomes) were isolated from rat hippocampi by Percoll density gradient centrifugation. Synaptosomes were loaded with [3H]glutamate, and basal and depolarisation-induced release of [3H]glutamate measured in control medium versus medium containing zaprinast (20 microm) plus or minus the PKA inhibitor H-89 (10 microm). Zaprinast produced a significant decrease in basal [3H]glutamate release. However, only combining zaprinast with H-89 significantly depressed K+-evoked [3H]glutamate release. After a 20-min drug washout, basal release returned to normal in all conditions, but K+-evoked [3H]glutamate release was persistently reduced only by the combination of zaprinast plus H-89. Long-term reduction of [3H]glutamate release from synaptosomes was completely prevented by the PKG inhibitor KT5823 (5 microm). These data demonstrate the existence of a presynaptic, cyclic GMP-PKG dependent cascade capable of expressing LTD of glutamate release from isolated hippocampal nerve terminals.
数据表明,突触前和突触后的变化均有助于活动依赖的长期突触可塑性。我们已经表明,使用V型磷酸二酯酶抑制剂扎普司特提高细胞内[环磷酸鸟苷]水平,并抑制环磷酸腺苷依赖性蛋白激酶(PKA),足以在大鼠海马体的沙氏侧支-CA1和苔藓纤维-CA3突触处引发突触传递的化学性长期抑制(CLTD)。CLTD不需要突触活动,选择性的突触后药物注射也不会对其产生影响,这表明它是由突触前诱导并表达的。为了直接评估这一假设,我们测试了递质释放的CLTD是否能在分离的突触前神经末梢中表达。通过Percoll密度梯度离心从大鼠海马体中分离出突触前神经末梢(突触体)。突触体被装载上[3H]谷氨酸,并在对照培养基与含有扎普司特(20微摩尔)加或不加PKA抑制剂H-89(10微摩尔)的培养基中测量基础和去极化诱导的[3H]谷氨酸释放。扎普司特使基础[3H]谷氨酸释放显著减少。然而,只有将扎普司特与H-89联合使用才会显著抑制钾离子诱发的[3H]谷氨酸释放。在20分钟的药物洗脱后,所有条件下的基础释放都恢复正常,但只有扎普司特加H-89的联合使用才会使钾离子诱发的[3H]谷氨酸释放持续减少。突触体中[3H]谷氨酸释放的长期减少被PKG抑制剂KT5823(5微摩尔)完全阻止。这些数据证明了存在一种突触前的、环磷酸鸟苷-PKG依赖性级联反应,能够表达从分离的海马神经末梢释放谷氨酸的长时程抑制。