Ramani Arun K, Marcotte Edward M
Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX 78712, USA.
J Mol Biol. 2003 Mar 14;327(1):273-84. doi: 10.1016/s0022-2836(03)00114-1.
Protein interactions are fundamental to the functioning of cells, and high throughput experimental and computational strategies are sought to map interactions. Predicting interaction specificity, such as matching members of a ligand family to specific members of a receptor family, is largely an unsolved problem. Here we show that by using evolutionary relationships within such families, it is possible to predict their physical interaction specificities. We introduce the computational method of matrix alignment for finding the optimal alignment between protein family similarity matrices. A second method, 3D embedding, allows visualization of interacting partners via spatial representation of the protein families. These methods essentially align phylogenetic trees of interacting protein families to define specific interaction partners. Prediction accuracy depends strongly on phylogenetic tree complexity, as measured with information theoretic methods. These results, along with simulations of protein evolution, suggest a model for the evolution of interacting protein families in which interaction partners are duplicated in coupled processes. Using these methods, it is possible to successfully find protein interaction specificities, as demonstrated for >18 protein families.
蛋白质相互作用是细胞功能的基础,人们一直在寻求高通量实验和计算策略来绘制相互作用图谱。预测相互作用特异性,例如将配体家族的成员与受体家族的特定成员进行匹配,在很大程度上仍是一个未解决的问题。在此我们表明,通过利用此类家族中的进化关系,可以预测它们的物理相互作用特异性。我们引入了矩阵比对的计算方法,用于寻找蛋白质家族相似性矩阵之间的最佳比对。第二种方法,即三维嵌入,可通过蛋白质家族的空间表示来可视化相互作用的伙伴。这些方法本质上是将相互作用蛋白质家族的系统发育树进行比对,以定义特定的相互作用伙伴。预测准确性在很大程度上取决于系统发育树的复杂性,这是用信息论方法衡量的。这些结果,连同蛋白质进化的模拟,提示了一个相互作用蛋白质家族进化的模型,其中相互作用伙伴在耦合过程中被复制。使用这些方法,可以成功找到蛋白质相互作用特异性,超过18个蛋白质家族的情况已得到证明。