Matangkasombut Oranart, Buratowski Stephen
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
Mol Cell. 2003 Feb;11(2):353-63. doi: 10.1016/s1097-2765(03)00033-9.
The histone code hypothesis proposes that covalently modified histone tails are binding sites for specific proteins. In vitro evidence suggests that factors containing bromodomains read the code by binding acetylated histone tails. Bromodomain Factor 1 (Bdf1), a protein that associates with TFIID, binds histone H4 with preference for multiply acetylated forms. In contrast, the closely related protein Bdf2 shows no preference for acetylated forms. A deletion of BDF1 but not BDF2 is lethal when combined with a mutant allele of ESA1 (a histone H4 acetyltransferase) or with nonacetylatable histone H4 variants. Bromodomain point mutations that block Bdf1 binding to histones disrupt transcription and reduce Bdf1 association with chromatin in vivo. Therefore, bromodomains with different specificity generate further complexity of the histone code.
组蛋白编码假说提出,共价修饰的组蛋白尾部是特定蛋白质的结合位点。体外证据表明,含溴结构域的因子通过结合乙酰化组蛋白尾部来解读该编码。溴结构域因子1(Bdf1)是一种与TFIID相关的蛋白质,它优先结合多重乙酰化形式的组蛋白H4。相比之下,与之密切相关的蛋白质Bdf2对乙酰化形式没有偏好。当与ESA1(一种组蛋白H4乙酰转移酶)的突变等位基因或与不可乙酰化的组蛋白H4变体结合时,BDF1的缺失是致死的,但BDF2的缺失则不然。阻断Bdf1与组蛋白结合的溴结构域点突变会破坏转录,并在体内减少Bdf1与染色质的结合。因此,具有不同特异性的溴结构域增加了组蛋白编码的复杂性。