Facchini Paola, Grandinetti Felice
Dipartimento di Scienze Ambientali and Istituto Nazionale di Fisica della Materia (INFM), Unità di Viterbo, Università della Tuscia, Largo dell' Università, 01100, Viterbo, Italy.
J Comput Chem. 2003 Apr 15;24(5):547-64. doi: 10.1002/jcc.10182.
The reaction between singlet nitrenium ions XNH(+) (X = F and Cl) and H(2)O has been investigated by high-level of theory ab initio calculations. The geometries of the involved intermediates, transition structures, and dissociation products have been optimized at the MP2(full)/6-31G(d) level of theory, and accurate total energies have been obtained using the Gaussian-3 (G3) procedure. The reaction commences by the exothermic formation of the F-NH-OH(2) (+) and Cl-NH-OH(2) (+) intermediates, which are in turn able to undergo two distinct low-energy reaction paths, namely, the isomerization to the N-protonated isomers of the hydroxylamines F-NH-OH or Cl-NH-OH, and the eventual extrusion of HF or HCl. The competitive or alternative occurrence of these two processes strictly depends on the nature of the substituent X. In the reaction between FNH(+) and H(2)O, the energy gained in the formation of the complex F-NH-OH(2) (+) from the association between FNH(+) and H(2)O, 52.1 kcal mol(-1), is by far larger than the activation barrier for the loss of HF from F-NH-OH(2) (+), computed as 24.9 kcal mol(-1). In addition, the F-NH-OH(2) (+) intermediate requires 33.0 kcal mol(-1) to overcome the barrier for the isomerization to F-NH(2)-OH(+). Therefore, the reaction between FNH(+) and H(2)O is expected to occur practically exclusively by HF elimination with formation of the HN-OH(+) ionic product. On the other hand, for the reaction between ClNH(+) and H(2)O, it is not possible to get a definitive conclusion on the competitive or alternative occurrence of the two reaction paths. In fact, the transition structure involved in the elimination of HCl from Cl-NH-OH(2) (+) is only 3.4 kcal mol(-1) lower in energy than the transition structure for the isomerization of Cl-NH-OH(2) (+) to Cl-NH(2)-OH(+). In addition, the absolute values of the energy barriers of these two processes, 24.2 and 27.6 kcal mol(-1), respectively, are comparable with the energy gained in the formation of the complex Cl-NH-OH(2) (+) from the association between ClNH(+) and H(2)O, 24.0 kcal mol(-).1 Therefore, the ClNH(+) cation is predicted to react with water significantly slower than FNH(+).
通过高水平的从头算理论计算研究了单线态氮鎓离子XNH⁺(X = F和Cl)与H₂O之间的反应。所涉及的中间体、过渡结构和解离产物的几何结构已在MP2(全)/6 - 31G(d)理论水平上进行了优化,并使用高斯-3(G3)程序获得了精确的总能量。反应通过放热形成F-NH-OH₂⁺和Cl-NH-OH₂⁺中间体开始,这些中间体又能够经历两条不同的低能量反应路径,即异构化为羟胺F-NH-OH或Cl-NH-OH的N-质子化异构体,以及最终挤出HF或HCl。这两个过程的竞争或交替发生严格取决于取代基X的性质。在FNH⁺与H₂O的反应中,FNH⁺与H₂O缔合形成络合物F-NH-OH₂⁺时获得的能量为52.1 kcal mol⁻¹,远大于从F-NH-OH₂⁺中损失HF的活化能垒,计算值为24.9 kcal mol⁻¹。此外,F-NH-OH₂⁺中间体需要33.0 kcal mol⁻¹来克服异构化为F-NH₂-OH⁺的能垒。因此,预计FNH⁺与H₂O的反应实际上将几乎完全通过消除HF形成HN-OH⁺离子产物来进行。另一方面,对于ClNH⁺与H₂O的反应,关于两条反应路径的竞争或交替发生无法得出明确结论。事实上,从Cl-NH-OH₂⁺中消除HCl所涉及的过渡结构的能量仅比Cl-NH-OH₂⁺异构化为Cl-NH₂-OH⁺的过渡结构低3.4 kcal mol⁻¹。此外,这两个过程的能垒绝对值分别为24.2和27.6 kcal mol⁻¹,与ClNH⁺与H₂O缔合形成络合物Cl-NH-OH₂⁺时获得的能量24.0 kcal mol⁻¹相当。因此,预计ClNH⁺阳离子与水的反应比FNH⁺慢得多。