Pinter A, Lücke M, Hoffmann Ch
Institut für Theoretische Physik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026318. doi: 10.1103/PhysRevE.67.026318. Epub 2003 Feb 27.
The influence of an axial through flow on the spatiotemporal growth behavior of different vortex structures in the Taylor-Couette system with radius ratio eta=0.5 is determined. The Navier-Stokes equations (NSE) linearized around the basic Couette-Poiseuille flow are solved numerically with a shooting method in a wide range of through flow strengths Re and different rates of co-rotating and counter-rotating cylinders for toroidally closed vortices with azimuthal wave number m=0 and for spiral vortex flow with m=+/-1. For each of these three different vortex varieties we have investigated (i) axially extended vortex structures, (ii) axially localized vortex pulses, and (iii) vortex fronts. The complex dispersion relations of the linearized NSE for vortex modes with the three different m are evaluated for real axial wave numbers for (i) and over the plane of complex axial wave numbers for (ii) and (iii). We have also determined the Ginzburg-Landau amplitude equation (GLE) approximation in order to analyze its predictions for the vortex structures (ii) and (iii). Critical bifurcation thresholds for extended vortex structures are evaluated. The boundaries between absolute and convective instability of the basic state for vortex pulses are determined with a saddle-point analysis of the dispersion relations. Fit parameters for power-law expansions of the boundaries up to Re4 are listed in two tables. Finally, the linearly selected front behavior of growing vortex structures is investigated using saddle-point analyses of the dispersion relations of NSE and GLE. For the two front intensity profiles (increasing in positive or negative axial direction) we have determined front velocities, axial growth rates, and the wave numbers and frequencies of the unfolding vortex patterns with azimuthal wave numbers m=0,+/-1, respectively.
确定了轴向通流对半径比η = 0.5的泰勒 - 库埃特系统中不同涡旋结构时空增长行为的影响。围绕基本库埃特 - 泊肃叶流线性化的纳维 - 斯托克斯方程(NSE),采用打靶法在广泛的通流强度Re范围内以及不同的同向和反向旋转圆柱速率下进行数值求解,其中包括方位波数m = 0的环形封闭涡旋以及m = +/-1的螺旋涡旋流。对于这三种不同的涡旋类型,我们研究了(i)轴向扩展的涡旋结构,(ii)轴向局部化的涡旋脉冲,以及(iii)涡旋前沿。对于(i),针对实轴向波数评估了具有三种不同m的涡旋模式的线性化NSE的复色散关系;对于(ii)和(iii),则在复轴向波数平面上进行评估。我们还确定了金兹堡 - 朗道振幅方程(GLE)近似,以分析其对涡旋结构(ii)和(iii)的预测。评估了扩展涡旋结构的临界分岔阈值。通过对色散关系进行鞍点分析,确定了涡旋脉冲基本状态的绝对不稳定性和对流不稳定性之间的边界。两个表格中列出了边界幂律展开至Re4的拟合参数。最后,使用NSE和GLE色散关系的鞍点分析研究了增长涡旋结构的线性选择前沿行为。对于两种前沿强度分布(在正或负轴向方向上增加),我们分别确定了前沿速度、轴向增长率以及方位波数m = 0, +/-1的展开涡旋模式的波数和频率。