Badurina David S, Zolli-Juran Michela, Brown Eric D
Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Room 4H2, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5.
Biochim Biophys Acta. 2003 Mar 21;1646(1-2):196-206. doi: 10.1016/s1570-9639(03)00019-0.
glycerol 3-phosphate cytidylyltransferase catalyzes the formation of CDP-glycerol, an activated form of glycerol 3-phosphate and key precursor to wall teichoic acid biogenesis in Gram-positive bacteria. There is high sequence identity (69%) between the CTP:glycerol 3-phosphate cytidylyltransferases from Bacillus subtilis 168 (TagD) and Staphylococcus aureus (TarD). The B. subtilis TagD protein was shown to catalyze cytidylyltransferase via a random mechanism with millimolar K(m) values for both CTP and glycerol 3-phosphate [J. Biol. Chem. 268, (1993) 16648] and exhibited negative cooperativity in the binding of substrates but not in catalysis [J. Biol. Chem. 276, (2001) 37922]. In the work described here on the S. aureus TarD protein, we have elucidated a steady state kinetic mechanism that is markedly different from that determined for B. subtilis TagD. Steady state kinetic experiments with recombinant, purified TarD employed a high-performance liquid chromatography assay developed in this work. The data were consistent with a ternary complex model. The K(m) values for CTP and glycerol 3-phosphate were 36 and 21 microM, respectively, and the k(cat) was 2.6 s(-1). Steady state kinetic analysis of the reverse (pyrophosphorylase) reaction was also consistent with a ternary complex model. Product inhibition studies indicated an ordered Bi-Bi reaction mechanism where glycerol 3-phosphate was the leading substrate and the release of CDP-glycerol preceded that of pyrophosphate. Finally, we investigated the capacity of S. aureus tarD to substitute for tagD in B. subtilis. The tarD gene was placed under control of the xylose promoter in a B. subtilis 168 mutant defective in tagD (temperature-sensitive, tag-12). Growth of the resulting strain at the restrictive temperature (47 degrees C) was shown to be xylose-dependent.
甘油3-磷酸胞苷转移酶催化CDP-甘油的形成,CDP-甘油是甘油3-磷酸的一种活化形式,是革兰氏阳性菌壁磷壁酸生物合成的关键前体。枯草芽孢杆菌168(TagD)和金黄色葡萄球菌(TarD)的CTP:甘油3-磷酸胞苷转移酶之间存在高度的序列同一性(69%)。已证明枯草芽孢杆菌TagD蛋白通过随机机制催化胞苷转移酶反应,对CTP和甘油3-磷酸的米氏常数(K(m))值均为毫摩尔级[《生物化学杂志》268,(1993年)16648],并且在底物结合方面表现出负协同性,但在催化过程中没有[《生物化学杂志》276,(2001年)37922]。在本文所述的关于金黄色葡萄球菌TarD蛋白的研究中,我们阐明了一种与枯草芽孢杆菌TagD所确定的稳态动力学机制明显不同的机制。使用在本研究中开发的高效液相色谱分析方法,对重组纯化的TarD进行稳态动力学实验。数据与三元复合物模型一致。CTP和甘油3-磷酸的K(m)值分别为36和21微摩尔,催化常数(k(cat))为2.6 s(-1)。对反向(焦磷酸化酶)反应的稳态动力学分析也与三元复合物模型一致。产物抑制研究表明存在有序的双底物双产物反应机制,其中甘油3-磷酸是主要底物,CDP-甘油的释放先于焦磷酸的释放。最后,我们研究了金黄色葡萄球菌tarD替代枯草芽孢杆菌tagD的能力。将tarD基因置于木糖启动子的控制下,导入tagD缺陷(温度敏感型,tag-12)的枯草芽孢杆菌168突变体中。结果表明,所得菌株在限制温度(47℃)下的生长依赖于木糖。