Akama Keith T, McEwen Bruce S
Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021-6399, USA.
J Neurosci. 2003 Mar 15;23(6):2333-9. doi: 10.1523/JNEUROSCI.23-06-02333.2003.
Estrogens induce synaptogenesis in the CA1 region of the dorsal hippocampus during the estrous cycle of the female rat. Functional consequences of such estrogen-mediated synaptogenesis include cyclic changes in neurotransmission and memory. At the molecular level, estrogen stimulates the rapid activation of specific signal transduction pathways, and of particular interest is the activation of Akt (protein kinase B), a key signal transduction intermediate that initiates protein translation by alleviating the downstream translational repression of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Using a well established in vitro model system of differentiated NG108-15 neurons to investigate such rapid signaling effects of estrogen, we show that estrogen stimulates the phosphorylation of Akt, an indication of kinase activation, as well as the phosphorylation of 4E-BP1. In turn, the activation of these signaling intermediates suggests a non-genomic mechanism by which estrogen might likewise lead to protein translation of dendrite-localized mRNA transcripts in the hippocampus in vivo. We therefore considered the translation of the dendritic spine scaffolding protein postsynaptic density-95 (PSD-95). Although estrogen does not stimulate a rapid increase in PSD-95 mRNA levels in NG108-15 neurons, we show here that estrogen does however stimulate a rapid increase in PSD-95 new protein synthesis in vitro and that this new protein synthesis is Akt dependent. These results demonstrate an essential role for Akt in estrogen-stimulated dendritic spine protein expression, describe for the first time a signal transduction pathway in PSD-95 expression, and delineate a novel, molecular mechanism by which ovarian hormones might translationally regulate synaptogenesis via activating protein synthesis for dendritic function.
在雌性大鼠的发情周期中,雌激素可诱导背侧海马体CA1区的突触形成。这种雌激素介导的突触形成的功能后果包括神经传递和记忆的周期性变化。在分子水平上,雌激素刺激特定信号转导通路的快速激活,特别值得关注的是Akt(蛋白激酶B)的激活,Akt是一种关键的信号转导中间体,它通过减轻真核起始因子4E结合蛋白1(4E-BP1)的下游翻译抑制来启动蛋白质翻译。利用已建立的分化NG108-15神经元体外模型系统来研究雌激素的这种快速信号效应,我们发现雌激素刺激Akt的磷酸化,这是激酶激活的一个指标,同时也刺激4E-BP1的磷酸化。反过来,这些信号中间体的激活表明了一种非基因组机制,通过这种机制,雌激素同样可能导致体内海马体中树突定位的mRNA转录本的蛋白质翻译。因此,我们考虑了树突棘支架蛋白突触后致密蛋白95(PSD-95)的翻译。虽然雌激素不会刺激NG108-15神经元中PSD-95 mRNA水平的快速增加,但我们在此表明,雌激素确实会刺激体外PSD-95新蛋白合成的快速增加,并且这种新蛋白合成依赖于Akt。这些结果证明了Akt在雌激素刺激的树突棘蛋白表达中的重要作用,首次描述了PSD-95表达中的信号转导通路,并描绘了一种新的分子机制,通过该机制,卵巢激素可能通过激活树突功能的蛋白质合成来翻译调控突触形成。