Ikezaki Akira, Nakamura Mikio
Department of Chemistry, School of Medicine, Toho University, Tokyo 143-8540, Japan.
Inorg Chem. 2003 Apr 7;42(7):2301-10. doi: 10.1021/ic0206138.
The reactions between Mn(Por)Cl and Bu(4)N(+)CN(-) have been examined in various solvents by UV-vis and (1)H NMR spectroscopy, where Por's are dianions of meso-tetraisopropylporphyrin (T(i)PrP), meso-tetraphenylporphyrin (TPP), meso-tetrakis(p-(trifluoromethyl)phenyl)porphyrin (p-CF(3)-TPP), meso-tetramesitylporphyrin (TMP), and meso-tetrakis(2,6-dichlorophenyl)porphyrin (2,6-Cl(2)-TPP). Population ratios of the reaction products, Mn(Por)(CN) and Mn(Por)(CN)(2), have been sensitively affected by the solvents used. In the case of Mn(T(i)PrP)Cl, the following results are obtained: (i) The bis-adduct is preferentially formed in dipolar aprotic solvents such as DMSO, DMF, and acetonitrile. (ii) Both the mono- and bis-adduct are formed in the less polar solvents such as CH(2)Cl(2) and benzene though the complete conversion to the bis-adduct is achieved with much smaller amount of the ligand in benzene solution. (iii) Only the mono-adduct is formed in CHCl(3) solution even in the presence of a large excess of cyanide. (iv) Neither the mono- nor the bis-adduct is obtained in methanol solution. The results mentioned above have been explained in terms of the C-H.N and O-H.N hydrogen bonding in chloroform and methanol solutions, respectively, between the solvent molecules and cyanide ligand; hydrogen bonding weakens the coordination ability of cyanide and reduces the population of the bis-adduct. The importance of the C-H.N weak hydrogen bonding is most explicitly shown in the following fact: while the starting complex is completely converted to the bis-adduct in CH(2)Cl(2) solution, the conversion from the mono- to the bis-adduct is not observed even in the presence of 7000 equiv of Bu(4)N(+)CN(-) in CHCl(3) solution. The effective magnetic moments of the bis-adduct has been determined by the Evans method to be 3.2 micro(B) at 25 degrees C, suggesting that the complex adopts the usual (d(xy))(2)(d(xz), d(yz))(2) electron configuration despite the highly ruffled porphyrin core expected for Mn(T(i)PrP)(CN)(2). The spin densities of Mn(T(i)PrP)(CN)(2) centered on the pi MO have been determined on the basis of the (1)H and (13)C NMR chemical shifts. Estimated spin densities are as follows: meso-carbon, -0.0014; alpha-pyrrole carbon, -0.0011; beta-pyrrole carbon, +0.0066; pyrrole nitrogen, -0.022. The spin densities at the pyrrole carbon and meso nitrogen atoms are much smaller than those of the corresponding Mn(TPP)(CN)(2), which is ascribed to the nonplanar porphyrin ring of Mn(T(i)PrP)(CN)(2). This study has revealed that the C-H.N weak hydrogen bonding is playing an important role in determining the stability of the manganese(III) complexes.
通过紫外可见光谱和核磁共振氢谱,在各种溶剂中研究了Mn(Por)Cl与Bu(4)N(+)CN(-)之间的反应,其中Por为中四异丙基卟啉(T(i)PrP)、中四苯基卟啉(TPP)、中四(对三氟甲基苯基)卟啉(p-CF(3)-TPP)、中四间甲苯基卟啉(TMP)和中四(2,6-二氯苯基)卟啉(2,6-Cl(2)-TPP)的二价阴离子。反应产物Mn(Por)(CN)和Mn(Por)(CN)(2)的比例受所用溶剂的显著影响。对于Mn(T(i)PrP)Cl,得到以下结果:(i)在二甲基亚砜、二甲基甲酰胺和乙腈等偶极非质子溶剂中优先形成双加合物。(ii)在二氯甲烷和苯等极性较小的溶剂中形成单加合物和双加合物,尽管在苯溶液中用少量配体就能完全转化为双加合物。(iii)即使在存在大量过量氰化物的情况下,在氯仿溶液中也只形成单加合物。(iv)在甲醇溶液中既不形成单加合物也不形成双加合物。上述结果分别根据氯仿和甲醇溶液中溶剂分子与氰化物配体之间的C-H.N和O-H.N氢键进行了解释;氢键削弱了氰化物的配位能力并减少了双加合物的比例。C-H.N弱氢键的重要性最明显地体现在以下事实中:虽然起始配合物在二氯甲烷溶液中完全转化为双加合物,但即使在氯仿溶液中存在7000当量的Bu(4)N(+)CN(-),也未观察到从单加合物向双加合物的转化。通过埃文斯方法测定双加合物在25℃时的有效磁矩为3.2微玻尔磁子,这表明尽管Mn(T(i)PrP)(CN)(2)预期具有高度褶皱的卟啉核,但该配合物采用通常的(d(xy))(2)(d(xz), d(yz))(2)电子构型。基于核磁共振氢谱和碳谱化学位移确定了以π分子轨道为中心的Mn(T(i)PrP)(CN)(2)的自旋密度。估计的自旋密度如下:中位碳,-0.0014;α-吡咯碳,-0.0011;β-吡咯碳,+0.0066;吡咯氮,-0.022。吡咯碳和中位氮原子处的自旋密度远小于相应的Mn(TPP)(CN)(2),这归因于Mn(T(i)PrP)(CN)(2)的非平面卟啉环。该研究表明C-H.N弱氢键在决定锰(III)配合物的稳定性方面起着重要作用。