DeRose Eugene F, Darden Thomas, Harvey Scott, Gabel Scott, Perrino Fred W, Schaaper Roel M, London Robert E
Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Box 12233, Research Triangle Park, North Carolina 27709, USA.
Biochemistry. 2003 Apr 8;42(13):3635-44. doi: 10.1021/bi0205451.
The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon (epsilon) subunit of HE provides the 3'-->5' exonucleolytic proofreading activity for this complex. Epsilon consists of two domains: an N-terminal domain containing the proofreading exonuclease activity (residues 1-186) and a C-terminal domain required for binding to the polymerase (alpha) subunit (residues 187-243). In addition to alpha, epsilon also binds the small (8 kDa) theta (theta) subunit. The function of theta is unknown, although it has been hypothesized to enhance the 3'-->5' exonucleolytic proofreading activity of epsilon. Using NMR analysis and molecular modeling, we have previously reported a structural model of epsilon186, the N-terminal catalytic domain of epsilon [DeRose et al. (2002) Biochemistry 41, 94]. Here, we have performed 3D triple resonance NMR experiments to assign the backbone and C(beta) resonances of [U-(2)H,(13)C,(15)N] methyl protonated epsilon186 in complex with unlabeled theta. A structural comparison of the epsilon186-theta complex with free epsilon186 revealed no major changes in secondary structure, implying that the overall structure is not significantly perturbed in the complex. Amide chemical shift comparisons between bound and unbound epsilon186 revealed a potential binding surface on epsilon for interaction with theta involving structural elements near the epsilon catalytic site. The most significant shifts observed for the epsilon186 amide resonances are localized to helix alpha1 and beta-strands 2 and 3 and to the region near the beginning of alpha-helix 7. Additionally, a small stretch of residues (K158-L161), which previously had not been assigned in uncomplexed epsilon186, is predicted to adopt beta-strand secondary structure in the epsilon186-theta complex and may be significant for interaction with theta. The amide shift pattern was confirmed by the shifts of aliphatic methyl protons, for which the larger shifts generally were concentrated in the same regions of the protein. These chemical shift mapping results also suggest an explanation for how the unstable dnaQ49 mutator phenotype of epsilon may be stabilized by binding theta.
DNA聚合酶III全酶(HE)是大肠杆菌的主要复制性聚合酶。HE的ε(epsilon)亚基为该复合物提供3'→5'核酸外切酶校对活性。ε由两个结构域组成:一个包含校对核酸外切酶活性的N端结构域(第1 - 186位氨基酸残基)和一个与聚合酶(α)亚基结合所需的C端结构域(第187 - 243位氨基酸残基)。除了α亚基,ε还与小的(8 kDa)θ(theta)亚基结合。θ亚基的功能尚不清楚,尽管有人推测它能增强ε的3'→5'核酸外切酶校对活性。利用核磁共振分析和分子建模,我们之前报道了ε的N端催化结构域ε186的结构模型[德罗丝等人(2002年)《生物化学》41卷,94页]。在此,我们进行了三维三重共振核磁共振实验,以确定与未标记的θ亚基结合的[U - (2)H,(13)C,(15)N]甲基质子化ε186的主链和Cβ共振。ε186 - θ复合物与游离ε186的结构比较显示二级结构没有重大变化,这意味着复合物中的整体结构没有受到显著干扰。结合态和未结合态ε186之间的酰胺化学位移比较揭示了ε上一个与θ相互作用的潜在结合表面,该表面涉及ε催化位点附近的结构元件。观察到的ε186酰胺共振最显著的位移定位于α1螺旋、β链2和3以及α螺旋7起始附近的区域。此外,一小段残基(K158 - L161),在未复合的ε186中之前未被归属,预计在ε186 - θ复合物中采用β链二级结构,可能对与θ的相互作用很重要。酰胺位移模式通过脂肪族甲基质子的位移得到证实,脂肪族甲基质子的较大位移通常集中在蛋白质的相同区域。这些化学位移图谱结果也为ε不稳定的dnaQ49突变体表型如何通过结合θ而稳定提供了解释。