Yanchuk Sergiy, Maistrenko Yuri, Mosekilde Erik
Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev 01601, Ukraine.
Chaos. 2003 Mar;13(1):388-400. doi: 10.1063/1.1496536.
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled Rössler oscillators.
考虑一个由两个耦合的相同混沌振子组成的系统,本文首先建立了完全同步混沌态的横向稳定性条件。应用周期轨道阈值理论来确定完全同步态中嵌入的低周期轨道失去其横向稳定性所经历的分岔,并分别根据 riddling 分岔的亚临界、超临界性质讨论全局和局部充满吸引子的盆地的出现。我们展示了在相互作用的混沌振子之间引入一个小的参数失配如何导致同步流形的偏移。发现耦合不对称的存在会导致失稳过程的进一步改变。最后,本文考虑了四个耦合的罗斯勒振子系统中的部分同步问题。