Tardioli Paulo W, Pedroche Justo, Giordano Raquel L C, Fernández-Lafuente Roberto, Guisán José M
Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
Biotechnol Prog. 2003 Mar-Apr;19(2):352-60. doi: 10.1021/bp025588n.
This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.
本文介绍了用于蛋白质可控水解的稳定的碱性蛋白酶-乙二醛衍生物。它们是通过将碱性蛋白酶固定并稳定在交联的10%琼脂糖珠上制备而成,使用了低活化度和高活化度的载体以及不同的固定时间。将碱性蛋白酶乙二醛衍生物与使用戊二醛和溴化氰作为活化反应物制备的其他琼脂糖衍生物进行了比较。还测试了衍生物在酪蛋白水解中的性能。在pH 8.0和50℃条件下,在戊二醛、溴化氰活化的琼脂糖以及低、高乙二醛基团浓度下固定1小时制备的碱性蛋白酶衍生物的半衰期分别约为10、29、60和164小时。更广泛的固定化会单调地导致更高的稳定性。使用96小时固定时间和高活化度载体制备出了最稳定的碱性蛋白酶-乙二醛衍生物。在pH 8.0和63℃条件下,其半衰期约为23小时,比可溶性酶稳定约500倍。所有衍生物的热失活均遵循单步非一级动力学。最稳定的衍生物在酪蛋白水解和小底物Boc-Ala-ONp水解中表现出约54%的可溶性酶活性。这种行为表明活性降低是由于酶的变形而非取向错误。由于可溶性酶的热失活,在80℃下使用最稳定的酶时酪蛋白的水解程度比使用可溶性酶时高2倍。因此,新型碱性蛋白酶-乙二醛衍生物的高稳定性允许设计在避免微生物生长的温度下连续水解蛋白质的工艺。