Ward Bryan A, Gorski J Christopher, Jones David R, Hall Stephen D, Flockhart David A, Desta Zeruesenay
Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
J Pharmacol Exp Ther. 2003 Jul;306(1):287-300. doi: 10.1124/jpet.103.049601. Epub 2003 Apr 3.
We used human liver microsomes (HLMs) and recombinant cytochromes P450 (P450s) to identify the routes of efavirenz metabolism and the P450s involved. In HLMs, efavirenz undergoes primary oxidative hydroxylation to 8-hydroxyefavirenz (major) and 7-hydroxyefavirenz (minor) and secondary metabolism to 8,14-dihydroxyefavirenz. The formation of 8-hydroxyefavirenz in two HLMs showed sigmoidal kinetics (average apparent Km, 20.2 micro M; Vmax, 140 pmol/min/mg protein; and Hill coefficient, 1.5), whereas that of 7-hydroxyefavirenz formation was characterized by hyperbolic kinetics (Km, 40.1 micro M and Vmax, 20.5 pmol/min/mg protein). In a panel of 10 P450s, CYP2B6 formed 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz from efavirenz (10 micro M) at the highest rate. The Km value for the formation of 8-hydroxyefavirenz in CYP2B6 derived from hyperbolic Eq. 12.4 micro M) was close to that obtained in HLMs (Km, 20.2 micro M). None of the P450s tested showed activity toward 7-hydroxylation of efavirenz. When 8-hydroxyefavirenz (2.5 micro M) was used as a substrate, 8,14-dihydroxyefavirenz was formed by CYP2B6 at the highest rate, and its kinetics showed substrate inhibition (Ksi, approximately 94 micro M in HLMs and approximately 234 micro M in CYP2B6). In a panel of 11 HLMs, 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz formation rates from efavirenz (10 micro M) correlated significantly with the activity of CYP2B6 and CYP3A. N,N',N"-Triethylenethiophosphoramide (thioTEPA; 50 micro M) inhibited the formation rates of 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz from efavirenz (10 micro M) by > or = 60% in HLMs) and CYP2B6, with Ki values < 4 micro M. In conclusion, CYP2B6 is the principal catalyst of efavirenz sequential hydroxylation. Efavirenz systemic exposure is likely to be subject to interindividual variability in CYP2B6 activity and to drug interactions involving this isoform. Efavirenz may be a valuable phenotyping tool to study the role of CYP2B6 in human drug metabolism.
我们使用人肝微粒体(HLMs)和重组细胞色素P450(P450s)来确定依非韦伦的代谢途径以及所涉及的P450s。在HLMs中,依非韦伦经历初次氧化羟基化生成8 - 羟基依非韦伦(主要产物)和7 - 羟基依非韦伦(次要产物),并经历二次代谢生成8,14 - 二羟基依非韦伦。在两种HLMs中8 - 羟基依非韦伦的生成呈现S形动力学(平均表观Km为20.2微摩尔;Vmax为140皮摩尔/分钟/毫克蛋白;希尔系数为1.5),而7 - 羟基依非韦伦生成的动力学特征为双曲线动力学(Km为40.1微摩尔,Vmax为20.5皮摩尔/分钟/毫克蛋白)。在一组10种P450s中,CYP2B6从依非韦伦(10微摩尔)生成8 - 羟基依非韦伦和8,14 - 二羟基依非韦伦的速率最高。由双曲线方程得出的CYP2B6中8 - 羟基依非韦伦生成的Km值(12.4微摩尔)与在HLMs中获得的值(Km为20.2微摩尔)相近。所测试的P450s中没有一个对依非韦伦的7 - 羟基化表现出活性。当使用8 - 羟基依非韦伦(2.5微摩尔)作为底物时,CYP2B6生成8,14 - 二羟基依非韦伦的速率最高,其动力学表现出底物抑制(在HLMs中的Ksi约为94微摩尔,在CYP2B6中约为234微摩尔)。在一组11种HLMs中,依非韦伦(10微摩尔)生成8 - 羟基依非韦伦和8,14 - 二羟基依非韦伦的速率与CYP2B6和CYP3A的活性显著相关。N,N',N'' - 三亚乙基硫代磷酰胺(硫替派;50微摩尔)在HLMs和CYP2B6中使依非韦伦(10微摩尔)生成8 - 羟基依非韦伦和8,14 - 二羟基依非韦伦的速率降低≥60%,Ki值<4微摩尔。总之,CYP2B6是依非韦伦顺序羟基化的主要催化剂。依非韦伦的全身暴露可能会因CYP2B6活性的个体间差异以及涉及该同工酶的药物相互作用而受到影响。依非韦伦可能是研究CYP2B6在人体药物代谢中作用的一种有价值的表型分析工具。