Suppr超能文献

嘧啶核苷酸的从头合成;与信号转导途径新出现的联系。

De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways.

作者信息

Huang M, Graves L M

机构信息

University of North Carolina at Chapel Hill, Department of Pharmacology, Manning Drive CB #7365, Chapel Hill, North Carolina 27599, USA.

出版信息

Cell Mol Life Sci. 2003 Feb;60(2):321-36. doi: 10.1007/s000180300027.

Abstract

The de novo biosynthesis of pyrimidine nucleotides provides essential precursors for multiple growth-related events in higher eukaryotes. Assembled from ATP, bicarbonate and glutamine, the uracil and cytosine nucleotides are fuel for the synthesis of RNA, DNA, phospholipids, UDP sugars and glycogen. Over the past 2 decades considerable progress has been made in elucidating the mechanisms by which cellular pyrimidines are modulated to meet the needs of the cell. Recent studies demonstrate that CAD, a rate-limiting enzyme in the de novo synthesis of pyrimidines, is regulated through reversible phosphorylation, Myc-dependent transcriptional changes and caspase-mediated degradation. These studies point to increasing evidence for cooperation between key cell signaling pathways and basic elements of cellular metabolism, and suggest that these events have the potential to determine distinct cellular fates, including growth, differentiation and death. This review highlights some of the recent advances in the regulation of pyrimidine synthesis by growth-factor-stimulated signaling pathways.

摘要

嘧啶核苷酸的从头生物合成可为高等真核生物中多个与生长相关的事件提供必需的前体。尿嘧啶和胞嘧啶核苷酸由ATP、碳酸氢盐和谷氨酰胺组装而成,是合成RNA、DNA、磷脂、UDP糖和糖原的原料。在过去20年里,在阐明细胞嘧啶如何被调节以满足细胞需求的机制方面取得了相当大的进展。最近的研究表明,CAD作为嘧啶从头合成中的限速酶,通过可逆磷酸化、Myc依赖的转录变化和半胱天冬酶介导的降解进行调节。这些研究表明,越来越多的证据表明关键细胞信号通路与细胞代谢的基本要素之间存在协同作用,并表明这些事件有可能决定不同的细胞命运,包括生长、分化和死亡。本综述重点介绍了生长因子刺激的信号通路在嘧啶合成调节方面的一些最新进展。

相似文献

1
De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways.
Cell Mol Life Sci. 2003 Feb;60(2):321-36. doi: 10.1007/s000180300027.
2
Regulation of carbamoyl phosphate synthetase by MAP kinase.
Nature. 2000 Jan 20;403(6767):328-32. doi: 10.1038/35002111.
3
Cell cycle-dependent regulation of pyrimidine biosynthesis.
J Biol Chem. 2003 Jan 31;278(5):3403-9. doi: 10.1074/jbc.M211078200. Epub 2002 Nov 15.
4
CAD, A Multienzymatic Protein at the Head of de Novo Pyrimidine Biosynthesis.
Subcell Biochem. 2019;93:505-538. doi: 10.1007/978-3-030-28151-9_17.
6
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1.
Science. 2013 Mar 15;339(6125):1323-8. doi: 10.1126/science.1228792. Epub 2013 Feb 21.
8
Nuclear localization and mitogen-activated protein kinase phosphorylation of the multifunctional protein CAD.
J Biol Chem. 2005 Jul 8;280(27):25611-20. doi: 10.1074/jbc.M504581200. Epub 2005 May 12.
10
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis.
Science. 2013 Mar 15;339(6125):1320-3. doi: 10.1126/science.1228771. Epub 2013 Feb 21.

引用本文的文献

2
Viral Reprogramming of Nucleotide Synthesis and Its Impact on Viral Infection.
J Med Virol. 2025 Aug;97(8):e70563. doi: 10.1002/jmv.70563.
3
Engineered bone-targeting apoptotic vesicles as a minimally invasive nanotherapy for heterotopic ossification.
J Nanobiotechnology. 2025 May 14;23(1):348. doi: 10.1186/s12951-025-03431-w.
4
Epileptic Encephalopathy Related to CAD Deleterious Variants-A Case Series.
Diseases. 2025 Mar 22;13(4):91. doi: 10.3390/diseases13040091.
6
Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.
J Virol. 2025 Feb 25;99(2):e0211024. doi: 10.1128/jvi.02110-24. Epub 2025 Jan 16.
8
Unveiling the Antiviral Capabilities of Targeting Human Dihydroorotate Dehydrogenase against SARS-CoV-2.
ACS Omega. 2024 Feb 28;9(10):11418-11430. doi: 10.1021/acsomega.3c07845. eCollection 2024 Mar 12.
9
Fructose promotes liver cancer via microbial acetate-induced O-GlcNAcylation.
Trends Endocrinol Metab. 2024 Feb;35(2):88-90. doi: 10.1016/j.tem.2023.12.002. Epub 2023 Dec 13.
10
Multi-omics analyses reveal ClpP activators disrupt essential mitochondrial pathways in triple-negative breast cancer.
Front Pharmacol. 2023 Mar 31;14:1136317. doi: 10.3389/fphar.2023.1136317. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验