Suppr超能文献

利用傅里叶变换图像重建和具有各向异性响应的探测器进行二维光声成像。

Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response.

作者信息

Köstli Komel P, Beard Paul C

机构信息

Department of Medical Physics and Bioengineering, University College London, Shropshire House, 11-20 Capper Street, London WC1E 6JA, United Kingdom.

出版信息

Appl Opt. 2003 Apr 1;42(10):1899-908. doi: 10.1364/ao.42.001899.

Abstract

Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described. The image-reconstruction time for a 208 x 482 pixel image is approximately 1 s. For the practical implementation of 2D photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be reconstructed. This approach was investigated by the numerical modeling of the broadband directional response of a rectangular detector and imaging of various spatially calibrated absorbing targets immersed in a turbid phantom. The experimental setup was based on a Q-switched Nd:YAG excitation laser source and a mechanically line-scanned Fabry-Perot polymer-film ultrasound sensor. For a 800 microm x 200 microm rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 microm, respectively.

摘要

对二维(2D)生物医学光声成像的理论和实验方面进行了研究。描述了一种基于二维傅里叶变换的重建算法,该算法比简单的径向反投影方法速度明显更快且伪影更少。对于一幅208×482像素的图像,其图像重建时间约为1秒。为了实现二维光声成像,采用矩形探测器几何结构以获得各向异性的探测灵敏度,从而抑制平面外信号,进而能够重建断层图像切片。通过对矩形探测器宽带方向响应的数值模拟以及对浸没在浑浊体模中的各种空间校准吸收目标进行成像,对该方法进行了研究。实验装置基于调Q Nd:YAG激发激光源和机械线扫描法布里 - 珀罗聚合物薄膜超声传感器。对于一个800微米×200微米的矩形探测器,在距探测器垂直距离z = 3.5毫米以内,重建图像切片厚度为0.8毫米,此后在z = 10毫米处增加到2毫米。重建切片内的水平和垂直空间分辨率分别约为200微米和60微米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验