Szymczyk A, Labbez C, Fievet P, Vidonne A, Foissy A, Pagetti J
Laboratoire de Chimie des Matériaux et Interfaces, 16 route de Gray, 25030 Cedex, Besancon, France.
Adv Colloid Interface Sci. 2003 Mar 19;103(1):77-94. doi: 10.1016/S0001-8686(02)00094-5.
Transport mechanisms through nanofiltration membranes are investigated in terms of contribution of convection, diffusion and migration to electrolyte transport. A Donnan steric pore model, based on the application of the extended Nernst-Planck equation and the assumption of a Donnan equilibrium at both membrane-solution interfaces, is used. The study is focused on the transport of symmetrical electrolytes (with symmetric or asymmetric diffusion coefficients). The influence of effective membrane charge density, permeate volume flux, pore radius and effective membrane thickness to porosity ratio on the contribution of the different transport mechanisms is investigated. Convection appears to be the dominant mechanism involved in electrolyte transport at low membrane charge and/or high permeate volume flux and effective membrane thickness to porosity ratio. Transport is mainly governed by diffusion when the membrane is strongly charged, particularly at low permeate volume flux and effective membrane thickness to porosity ratio. Electromigration is likely to be the dominant mechanism involved in electrolyte transport only if the diffusion coefficient of coions is greater than that of counterions.
从对流、扩散和迁移对电解质传输的贡献方面,对通过纳滤膜的传输机制进行了研究。采用了一种唐南位阻孔模型,该模型基于扩展能斯特-普朗克方程的应用以及在两个膜-溶液界面处存在唐南平衡的假设。该研究聚焦于对称电解质(具有对称或不对称扩散系数)的传输。研究了有效膜电荷密度、渗透体积通量、孔径以及有效膜厚度与孔隙率之比对不同传输机制贡献的影响。在低膜电荷和/或高渗透体积通量以及有效膜厚度与孔隙率之比的情况下,对流似乎是电解质传输中涉及的主要机制。当膜带强电荷时,特别是在低渗透体积通量以及有效膜厚度与孔隙率之比的情况下,传输主要由扩散控制。仅当同离子的扩散系数大于反离子的扩散系数时,电迁移才可能是电解质传输中涉及的主要机制。