Xu Jide, Whisenhunt Donald W, Veeck Alan C, Uhlir Linda C, Raymond Kenneth N
Department of Chemistry and Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720-1460, USA.
Inorg Chem. 2003 Apr 21;42(8):2665-74. doi: 10.1021/ic0259888.
The coordination chemistry of actinide(IV) ions with hydroxypyridinone ligands has been initially explored by examining the complexation of Th(IV) ion with bidentate PR-1,2-HOPO (HL(1)()), PR-Me-3,2-HOPO (HL(2)()), and PR-3,4-HOPO-N (HL(3)()) ligands. The complexes Th(L(1)())(4), Th(L(2)())(4), and Th(L(3)())(4) were prepared in methanol solution from Th(acac)(4) and the corresponding ligand. Single-crystal X-ray diffraction analyses are reported for the free ligand PR-Me-3,2-HOPO (HL(2)()) [Ponemacr;, Z = 8, a = 8.1492(7) A, b = 11.1260(9) A, c = 23.402(2) A, alpha = 87.569(1) degrees, beta = 86.592(1) degrees, gamma = 87.480(1) degrees ], and the complex Th(L(2)())(4).H(2)O [Pna2(1) (No. 33), Z = 4, a = 17.1250(5) A, b = 12.3036(7) A, c = 23.880 (1) A]. A comparison of the structure of the metal complex Th-PR-Me-3,2-HOPO with that of free ligand PR-Me-3,2-HOPO reveals that the ligand geometry is the same in the free ligand and in the metal complex. Amide hydrogen bonds enhance the rigidity and stability of the complex and demonstrate that the Me-3,2-HOPO ligands are predisposed for metal chelation. Solution thermodynamic studies determined overall formation constants (log beta(140)) for Th(L(1)())(4), Th(L(2)())(4), and Th(L(3)())(4) of 36.0(3), 38.3(3), and 41.8(5), respectively. Species distribution calculations show that the 4:1 metal complex Th(L)(4) is the dominant species in the acidic range (pH < 6) for PR-1,2-HOPO, in weakly acidic to physiological pH range for PR-Me-3,2-HOPO and in the high-pH range (>8) for PR-3,4-HOPO-N. This finding parallels the relative acidity of these structurally related ligands. In the crystal of [Th(L(2)())(4)].H(2)O, the chiral complex forms an unusual linear coordination polymer composed of linked, alternating enantiomers.
通过研究钍(IV)离子与双齿PR-1,2-HOPO(HL(1)())、PR-Me-3,2-HOPO(HL(2)())和PR-3,4-HOPO-N(HL(3)())配体的络合作用,首次探索了锕系元素(IV)离子与羟基吡啶酮配体的配位化学。配合物Th(L(1)())(4)、Th(L(2)())(4)和Th(L(3)())(4)是在甲醇溶液中由Th(acac)(4)和相应配体制备而成。报道了游离配体PR-Me-3,2-HOPO(HL(2)())[Ponemacr;,Z = 8,a = 8.1492(7) Å,b = 11.1260(9) Å,c = 23.402(2) Å,α = 87.569(1)°,β = 86.592(1)°,γ = 87.480(1)°]和配合物Th(L(2)())(4).H(2)O [Pna2(1)(No. 33),Z = 4,a = 17.1250(5) Å,b = 12.3036(7) Å,c = 23.880 (1) Å]的单晶X射线衍射分析结果。金属配合物Th-PR-Me-3,2-HOPO与游离配体PR-Me-3,2-HOPO的结构比较表明,游离配体和金属配合物中的配体几何形状相同。酰胺氢键增强了配合物的刚性和稳定性,并表明Me-3,2-HOPO配体易于进行金属螯合。溶液热力学研究确定了Th(L(1)())(4)、Th(L(2)())(4)和Th(L(3)())(4)的总形成常数(log β(140))分别为36.0(3)、38.3(3)和41.8(5)。物种分布计算表明,对于PR-1,2-HOPO,4:1的金属配合物Th(L)(4)在酸性范围(pH < 6)中是主要物种;对于PR-Me-3,2-HOPO,在弱酸性至生理pH范围内是主要物种;对于PR-3,4-HOPO-N,在高pH范围(>8)中是主要物种。这一发现与这些结构相关配体的相对酸度相似。在[Th(L(2)())(4)].H(2)O晶体中,手性配合物形成了由相连的交替对映体组成的不寻常的线性配位聚合物。