Suppr超能文献

模块化聚酮合酶结构域组织和底物特异性预测的计算方法

Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases.

作者信息

Yadav Gitanjali, Gokhale Rajesh S, Mohanty Debasisa

机构信息

National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.

出版信息

J Mol Biol. 2003 Apr 25;328(2):335-63. doi: 10.1016/s0022-2836(03)00232-8.

Abstract

Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.

摘要

模块化聚酮合酶(PKSs)是大型多酶、多结构域的巨型合成酶,参与一类具有重要药学意义的天然产物即聚酮化合物的生物合成。这些酶含有一组称为模块的重复活性位点,每个模块中的结构域决定了将添加到不断增长的聚酮链上的化学部分。这种生物合成的模块化逻辑已被合理利用并取得了一定成功,通过基因操作生产了几种新型化合物。然而,为了充分发挥其组合生物合成的巨大潜力,开发基于知识的计算机方法以将PKSs的序列和结构域组织与其聚酮产物相关联至关重要。在这项工作中,我们对经过实验表征的PKS簇进行了广泛的序列分析,以开发一种自动计算协议,用于在多肽序列中明确识别各种PKS结构域。已采用基于结构的方法来识别酰基转移酶(AT)结构域的假定活性位点残基,这些残基在聚酮生物合成过程中控制对各种起始单元和延伸单元的特异性。基于对活性位点残基的分析以及代表性AT结构域活性位点中底物的分子建模,我们确定了一个关键残基,该残基可能在该结构域选择延伸基团期间区分丙二酸和甲基丙二酸中起主要作用。结构建模还解释了实验观察到的AT结构域在底物选择中的手性偏好。该计算协议已用于预测来自各种微生物基因组的PKS簇的结构域组织和底物特异性。我们的分析结果以及用于预测结构域组织和底物特异性的计算工具已以可搜索的计算机化数据库(PKSDB)的形式进行整理。PKSDB将作为鉴定由未表征的PKS簇生物合成的聚酮产物的有价值工具。该数据库还可为合理设计工程新型聚酮化合物的实验提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验