Suppr超能文献

[通过微系统技术制造金刚石刀片]

[Manufacture of diamond blades via microsystem technology].

作者信息

Spraul Christoph W, Ertl Stephan, Strobel Stefan, Gretzschel Ralph, Schirmer Enrico, Rösch Rudolf, Lingenfelder Christian, Lang Gerhard K

机构信息

Universitäts-Augenklinik Ulm.

出版信息

Klin Monbl Augenheilkd. 2003 Apr;220(4):229-34. doi: 10.1055/s-2003-38624.

Abstract

PURPOSE

The application of diamond knives has steadily increased in ophthalmic surgery. However, the geometry of the blade, its thickness and the sharpness of the cutting edge are limited by the abrasive diamond polishing process, e. g. the crystalline morphology of the bulk material and the grinding powder used. A new generation of diamond blades is presented herewith allowing free choice of blade shape and thickness and possessing excellent sharpness due to a new polishing process.

METHODS

The new production method is based on a high-quality CVD (chemical vapour deposition) diamond film of some tenths of microns thickness, deposited on a silicon wafer as microchip technology. The mechanical properties of this synthetic diamond film are almost equal to those of a natural diamond and the surface of this film is mirror-like after deposition without requiring post-polishing. The shape of the blade can be freely defined and is transferred into the diamond film by a plasma polishing process adopted from microsystem technology.

RESULTS

The new production method results in highly reproducible diamond blades. Concave blades and round shapes can now be realised without the restrictions of the conventional production process. The force-free fabrication method even allows realisation of miniaturized blades (e. g. width < 0.125 mm, thickness < 50 microm) far beyond the possibilities of conventional diamond blade production. Plasma polishing by means of gas atoms results in extreme sharpness with the cutting edge radius in the range of approx. 3 nm.

CONCLUSIONS

Utilising microsystem technology we were able to manufacture reproducible artificial diamond blades. The new process offers for the first time surgeons a possibility of designing blades with a geometry close to their personal needs. Furthermore, the potential of facet-free ergonomically shaped diamond blades may stimulate further improvements towards novel surgical techniques.

摘要

目的

金刚石刀在眼科手术中的应用稳步增加。然而,刀片的几何形状、厚度和刀刃的锋利度受到金刚石研磨抛光工艺的限制,例如大块材料的晶体形态和所使用的研磨粉。本文展示了新一代金刚石刀片,其允许自由选择刀片形状和厚度,并且由于采用了新的抛光工艺而具有出色的锋利度。

方法

新的生产方法基于厚度为十分之几微米的高质量化学气相沉积(CVD)金刚石薄膜,该薄膜以微芯片技术沉积在硅晶片上。这种合成金刚石薄膜的机械性能几乎与天然金刚石相同,并且在沉积后其表面呈镜面状,无需进行后续抛光。刀片的形状可以自由定义,并通过微系统技术采用的等离子体抛光工艺转移到金刚石薄膜中。

结果

新的生产方法可生产出高度可重复的金刚石刀片。现在可以实现凹形刀片和圆形,而不受传统生产工艺的限制。无外力制造方法甚至可以实现小型化刀片(例如宽度<0.125毫米,厚度<50微米),这远远超出了传统金刚石刀片生产的可能性。通过气体原子进行等离子体抛光可实现极高的锋利度,刀刃半径在约3纳米范围内。

结论

利用微系统技术,我们能够制造出可重复的人造金刚石刀片。新工艺首次为外科医生提供了设计接近其个人需求几何形状刀片的可能性。此外,无刻面人体工程学形状金刚石刀片的潜力可能会刺激新型手术技术的进一步改进。

相似文献

1
[Manufacture of diamond blades via microsystem technology].
Klin Monbl Augenheilkd. 2003 Apr;220(4):229-34. doi: 10.1055/s-2003-38624.
2
[Can the cutting performance of trephines still be improved?].
Klin Monbl Augenheilkd. 2005 Sep;222(9):709-16. doi: 10.1055/s-2005-858661.
3
Ancient technology in contemporary surgery.
West J Med. 1982 Mar;136(3):265-9.
4
The sharpness of incision instruments in corneal tissue.
Ophthalmic Surg. 1989 Feb;20(2):120-3.
5
A newly-developed electrodeposited diamond scaler with high abrasive resistance.
J Periodontol. 1995 Oct;66(10):878-86. doi: 10.1902/jop.1995.66.10.878.
7
Assessment of reprocessed arthroscopic shaver blades.
Arthroscopy. 2006 Oct;22(10):1046-52. doi: 10.1016/j.arthro.2006.07.021.
8
Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.
Am J Sports Med. 2009 Feb;37(2):266-73. doi: 10.1177/0363546508325668. Epub 2008 Dec 31.
10
Cleaning of ophthalmic diamond scalpels.
J Refract Corneal Surg. 1994 Sep-Oct;10(5):582-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验