Vanhoye Damien, Bruston Francine, Nicolas Pierre, Amiche Mohamed
Laboratoire de Bioactivation des Peptides, Institut Jacques Monod, Paris, France.
Eur J Biochem. 2003 May;270(9):2068-81. doi: 10.1046/j.1432-1033.2003.03584.x.
The dermal glands of frogs produce antimicrobial peptides that protect the skin against noxious microorganisms and assist in wound repair. The sequences of these peptides are very dissimilar, both within and between species, so that the 5000 living anuran frogs may produce approximately 100 000 different antimicrobial peptides. The antimicrobial peptides of South American hylid frogs are derived from precursors, the preprodermaseptins, whose signal peptides and intervening sequences are remarkably conserved, but their C-terminal domains are markedly diverse, resulting in mature peptides with different lengths, sequences and antimicrobial spectra. We have used the extreme conservation in the preproregion of preprodermaseptin transcripts to identify new members of this family in Australian and South American hylids. All these peptides are cationic, amphipathic and alpha-helical. They killed a broad spectrum of microorganisms and acted in synergy. 42 preprodermaseptin gene sequences from 10 species of hylid and ranin frogs were analyzed in the context of their phylogeny and biogeography and of geophysical models for the fragmentation of Gondwana to examine the strategy that these frogs have evolved to generate an enormous array of peptide antibiotics. The hyperdivergence of modern antimicrobial peptides and the number of peptides per species result from repeated duplications of a approximately 150-million-year-old ancestral gene and accelerated mutations of the mature peptide domain, probably involving a mutagenic, error-prone, DNA polymerase similar to Escherichia coli Pol V. The presence of antimicrobial peptides with such different structures and spectra of action represents the successful evolution of multidrug defense by providing frogs with maximum protection against infectious microbes and minimizing the chance of microorganisms developing resistance to individual peptides. The hypermutation of the antimicrobial domain by a targeted mutagenic polymerase that can generate many sequence changes in a few steps may have a selective survival value when frogs colonizing a new ecological niche encounter different microbial predators.
青蛙的皮肤腺会产生抗菌肽,这些抗菌肽可保护皮肤免受有害微生物侵害,并有助于伤口修复。这些肽的序列在物种内部和物种之间都非常不同,因此现存的5000种无尾蛙可能会产生大约10万种不同的抗菌肽。南美洲雨蛙科青蛙的抗菌肽来源于前体,即前皮肤防御素,其信号肽和间隔序列非常保守,但其C端结构域明显不同,导致成熟肽具有不同的长度、序列和抗菌谱。我们利用前皮肤防御素转录本前原区的极端保守性,在澳大利亚和南美洲雨蛙中鉴定出该家族的新成员。所有这些肽都是阳离子性、两亲性且呈α螺旋结构。它们能杀死多种微生物并具有协同作用。我们分析了来自10种雨蛙科和姬蛙科青蛙的42个前皮肤防御素基因序列,结合它们的系统发育、生物地理学以及冈瓦纳大陆分裂的地球物理模型,以研究这些青蛙进化出大量肽类抗生素的策略。现代抗菌肽的高度分化以及每个物种的肽数量,是由一个约1.5亿年前的祖先基因重复复制以及成熟肽结构域的加速突变导致的,可能涉及一种类似于大肠杆菌Pol V的诱变、易出错的DNA聚合酶。具有如此不同结构和作用谱的抗菌肽的存在,代表了多药防御的成功进化,为青蛙提供了对感染性微生物的最大保护,并最小化了微生物对单个肽产生抗性的可能性。当在新生态位定殖的青蛙遇到不同的微生物捕食者时,由靶向诱变聚合酶引起的抗菌结构域的超突变,能在几步之内产生许多序列变化,可能具有选择性生存价值。