Binz Anne-Kathrin, Rodriguez Rene C, Biddison William E, Baker Brian M
Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA.
Biochemistry. 2003 May 6;42(17):4954-61. doi: 10.1021/bi034077m.
The class I major histocompatibility (MHC) molecule is a heterotrimer composed of a heavy chain, the small subunit beta(2)-microglobulin (beta(2)m), and a peptide. Fluorescence anisotropy has been used to assay the interaction of a labeled peptide with a recombinant, soluble form of the class I MHC HLA-A2. Consistent with earlier work, peptide binding is shown to be a two-step process limited by a conformational rearrangement in the heavy chain/beta(2)m heterodimer. However, we identify two pathways for peptide dissociation from the heterotrimer: (1) initial peptide dissociation leaving a heavy chain/beta(2)m heterodimer and (2) initial dissociation of beta(2)m, followed by peptide dissociation from the heavy chain. Eyring analyses of rate constants measured as a function of temperature permit for the first time a complete thermodynamic characterization of peptide binding. We find that in this case peptide binding is mostly entropically driven, likely reflecting the hydrophobic character of the peptide binding groove and the peptide anchor residues. Thermodynamic and kinetic analyses of peptide-MHC interactions as performed here may be of practical use in the engineering of peptides with desired binding properties and will aid in the interpretation of the effects of MHC and peptide substitutions on peptide binding and T cell reactivity. Finally, our data suggest a role for beta(2)m in dampening conformational dynamics in the heavy chain. Remaining conformational variability in the heavy chain once beta(2)m has bound may be a mechanism to promote promiscuity in peptide binding.
I类主要组织相容性复合体(MHC)分子是一种异源三聚体,由一条重链、小亚基β2-微球蛋白(β2m)和一个肽段组成。荧光各向异性已被用于检测标记肽段与重组可溶性I类MHC HLA-A2的相互作用。与早期工作一致,肽段结合显示为一个两步过程,受重链/β2m异二聚体中的构象重排限制。然而,我们确定了肽段从三聚体解离的两条途径:(1)初始肽段解离,留下重链/β2m异二聚体;(2)β2m的初始解离,随后肽段从重链解离。对作为温度函数测量的速率常数进行艾林分析,首次实现了肽段结合的完整热力学表征。我们发现,在这种情况下,肽段结合主要由熵驱动,这可能反映了肽段结合凹槽和肽段锚定残基的疏水特性。本文所进行的肽段-MHC相互作用的热力学和动力学分析可能在设计具有所需结合特性的肽段方面具有实际用途,并将有助于解释MHC和肽段取代对肽段结合和T细胞反应性的影响。最后,我们的数据表明β2m在抑制重链的构象动力学方面发挥作用。一旦β2m结合后重链中剩余的构象变异性可能是促进肽段结合中的混杂性的一种机制。