Suppr超能文献

分析住院时间:均值回归还是中位数回归?

Analyzing hospital length of stay: mean or median regression?

作者信息

Lee Andy H, Fung Wing K, Fu Bo

机构信息

School of Public Health, Curtin University of Technology, Perth, WA, Australia.

出版信息

Med Care. 2003 May;41(5):681-6. doi: 10.1097/01.MLR.0000062550.23101.6F.

Abstract

BACKGROUND

Length of stay (LOS) is an important measure of hospital activity and health care utilization, but its empirical distribution is often positively skewed.

OBJECTIVE

This study reviews the mean and median regression approaches for analyzing LOS, which have implications for service planning, resource allocation, and bed utilization.

METHODS

The two approaches are applied to analyze hospital discharge data on cesarean delivery. Both models adjust for patient and health-related characteristics, and for the dependency of LOS outcomes nested within hospitals. The estimation methods are also compared in a simulation study.

RESULTS

For the empirical application, the mean regression results are somewhat sensitive to the magnitude of trimming chosen. The identified factors from median regression, namely number of diagnoses, number of procedures, and payment classification, are robust to high-LOS outliers. The simulation experiment shows that median regression can outperform mean regression even when the response variable is moderately positively skewed.

CONCLUSION

Median regression appears to be a suitable alternative to analyze the clustered and positively skewed LOS, without transforming and trimming the data arbitrarily.

摘要

背景

住院时间(LOS)是衡量医院活动和医疗保健利用情况的一项重要指标,但其经验分布往往呈正偏态。

目的

本研究回顾了用于分析住院时间的均值回归和中位数回归方法,这两种方法对服务规划、资源分配和床位利用具有重要意义。

方法

将这两种方法应用于分析剖宫产的医院出院数据。两种模型均针对患者和健康相关特征以及嵌套在医院内的住院时间结果的依赖性进行了调整。在模拟研究中还对估计方法进行了比较。

结果

对于实证应用,均值回归结果对所选截尾幅度有些敏感。从中位数回归中识别出的因素,即诊断数量、手术数量和支付分类,对高住院时间异常值具有稳健性。模拟实验表明,即使响应变量呈中度正偏态,中位数回归也可能优于均值回归。

结论

中位数回归似乎是分析聚类且呈正偏态的住院时间的合适替代方法,无需对数据进行任意变换和截尾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验