Suppr超能文献

Modeling ventricular contraction with heart rate changes.

作者信息

Ottesen J T, Danielsen M

机构信息

Department of Mathematics and Physics, Roskilde University, Postbox 260, Roskilde DK-4000, Denmark.

出版信息

J Theor Biol. 2003 Jun 7;222(3):337-46. doi: 10.1016/s0022-5193(03)00040-7.

Abstract

Recently, a mathematical model of the pumping heart has been proposed describing the heart as a pressure source depending on time, volume and flow. The underlying concept is based on a new two-step paradigm that allows separation between isovolumic (non-ejecting) and ejecting heart properties. The first step describes the ventricular pressure in the isovolumic ventricle. In the following step, the isovolumic description is extended with the ejection effect in order to embrace the pumping heart during actual blood ejection. The description of the isovolumic heart properties plays a crucial role in this paradigm. However, only a single isovolumic model has previously been used restricting the heart rate to 1 Hz. In this paper, a family of models describing the isovolumic contracting ventricle are critically examined. A characterization of what constitutes an optimal model is given and used as a criteria for choosing the optimal model in this family. Moreover, and this is indeed a point, the proposed model in this study is valid for arbitrary heart rates and based on experimental data. The model exhibits all major features of the ejecting heart, including how ventricular pressure and flow vary in time for various heart rates and how stroke volume and cardiac output vary with heart rate. The modeling strategy presented embraces the same steps and demarcations as those suitable for clinical examination whereby new experiments are suggested.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验