Valero-Cuevas Francisco J, Johanson M Elise, Towles Joseph D
Neuromuscular Biomechanics Laboratory, Sibley School of Mechanical and Aerospace Engineering, Cornell University, 222 Upson Hall, Ithaca, NY 14853-7501, USA.
J Biomech. 2003 Jul;36(7):1019-30. doi: 10.1016/s0021-9290(03)00061-7.
A biomechanical model of the thumb can help researchers and clinicians understand the clinical problem of how anatomical variability contributes to the variability of outcomes of surgeries to restore thumb function. We lack a realistic biomechanical model of the thumb because of the variability/uncertainty of musculoskeletal parameters, the multiple proposed kinematic descriptions and methods to solve the muscle redundancy problem, and the paucity of data to validate the model with in vivo coordination patterns and force output. We performed a multi-stage validation of a biomechanical computer model against our measurements of maximal static thumbtip force and fine-wire electromyograms (EMG) from 8 thumb muscles in each of five orthogonal directions in key and opposition pinch postures. A low-friction point-contact at the thumbtip ensured that subjects did not produce thumbtip torques during force production. The 3-D, 8-muscle biomechanical thumb model uses a 5-axis kinematic description with orthogonal and intersecting axes of rotation at the carpometacarpal and metacarpophalangeal joints. We represented the 50 musculoskeletal parameters of the model as stochastic variables based on experimental data, and ran Monte Carlo simulations in the "inverse" and "forward" directions for 5000 random instantiations of the model. Two inverse simulations (predicting the distribution of maximal static thumbtip forces and the muscle activations that maximized force) showed that: the model reproduces at most 50% of the 80 EMG distributions recorded (eight muscle excitations in 5 force directions in two postures); and well-directed thumbtip forces of adequate magnitude are predicted only if accompanied by unrealistically large thumbtip torques (0.64+/-0.28Nm). The forward simulation (which fed the experimental distributions of EMG through random instantiations of the model) resulted in misdirected thumbtip force vectors (within 74.3+/-24.5 degrees from the desired direction) accompanied by doubly large thumbtip torques (1.32+/-0.95Nm). Taken together, our results suggest that the variability and uncertainty of musculoskeletal parameters and the choice of solution method are not the likely reason for the unrealistic predictions obtained. Rather, the kinematic description of the thumb we used is not representative of the transformation of net joint torques into thumbtip forces/torques in the human thumb. Future efforts should focus on validating alternative kinematic descriptions of the thumb.
拇指的生物力学模型有助于研究人员和临床医生理解解剖学变异如何导致恢复拇指功能手术结果变异这一临床问题。由于肌肉骨骼参数的变异性/不确定性、多种提出的运动学描述以及解决肌肉冗余问题的方法,以及用于根据体内协调模式和力输出验证模型的数据匮乏,我们缺乏一个逼真的拇指生物力学模型。我们针对在关键捏合和对掌捏合姿势下五个正交方向上每根拇指的最大静态指尖力测量值以及来自8块拇指肌肉的细丝肌电图(EMG),对一个生物力学计算机模型进行了多阶段验证。指尖处的低摩擦点接触确保受试者在产生力时不会产生指尖扭矩。这个三维、八肌肉的拇指生物力学模型采用了一种五轴运动学描述,在腕掌关节和掌指关节处有正交且相交的旋转轴。我们根据实验数据将模型的50个肌肉骨骼参数表示为随机变量,并在“反向”和“正向”方向上针对模型的5000个随机实例运行蒙特卡罗模拟。两个反向模拟(预测最大静态指尖力的分布以及使力最大化的肌肉激活情况)表明:该模型最多只能再现所记录的80种EMG分布中的50%(两种姿势下五个力方向上的八种肌肉兴奋情况);并且只有在伴随着不切实际的大指尖扭矩(0.64±0.28牛米)时,才能预测出大小合适、方向正确的指尖力。正向模拟(通过模型的随机实例输入EMG的实验分布)导致指尖力向量方向错误(与期望方向的夹角在74.3±24.5度以内),同时伴随着加倍的大指尖扭矩(1.32±0.95牛米)。综合来看,我们的结果表明,肌肉骨骼参数的变异性和不确定性以及求解方法的选择不太可能是获得不切实际预测结果的原因。相反,我们所使用的拇指运动学描述并不能代表人类拇指中净关节扭矩向指尖力/扭矩的转换。未来的工作应侧重于验证拇指的替代运动学描述。