Victor Bruno L, Vicente João B, Rodrigues Rute, Oliveira Solange, Rodrigues-Pousada Claudina, Frazão Carlos, Gomes Cláudio M, Teixeira Miguel, Soares Cláudio M
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apt 127, Av República, 2781-901 Oeiras, Portugal.
J Biol Inorg Chem. 2003 Apr;8(4):475-88. doi: 10.1007/s00775-002-0440-5. Epub 2003 Feb 15.
The interaction and electron transfer (ET) between rubredoxin (Rd) and rubredoxin:oxygen oxidoreductase (ROO) from Desulfovibrio gigas is studied by molecular modelling techniques. Experimental kinetic assays using recombinant proteins show that the Rd reoxidation by ROO displays a bell-shaped dependence on ionic strength, suggesting a non-trivial electrostatic dependence of the interaction between these two proteins. Rigid docking studies reveal a prevalence for Rd to interact, in a very specific way, with the surface of the ROO dimer near its FMN cofactors. The optimization of the lowest energy complexes, using molecular dynamics simulation, shows a very tight interaction between the surface of the two proteins, with a high probability for Rd residues (but not the iron centre directly) to be in direct contact with the FMN cofactors of ROO. Both electrostatics and van der Waals interactions contribute to the final energy of the complex. In these complexes, the major contributions for complex formation are polar interactions between acidic residues of Rd and basic residues of ROO, plus substantial non-polar interactions between different groups. Important residues for this process are identified. ET estimates (using the Pathways model), in the optimized lowest energy complexes, suggest that these configurations are efficient for transferring electrons. The experimental bell-shaped dependence of kinetics on ionic strength is analysed in view of the molecular modelling results, and hypotheses for the molecular basis of this phenomenon are discussed.
利用分子建模技术研究了来自巨大脱硫弧菌的红素氧还蛋白(Rd)与红素氧还蛋白:氧氧化还原酶(ROO)之间的相互作用和电子转移(ET)。使用重组蛋白进行的实验动力学分析表明,ROO对Rd的再氧化表现出对离子强度的钟形依赖性,这表明这两种蛋白之间的相互作用存在非平凡的静电依赖性。刚性对接研究表明,Rd以非常特定的方式与ROO二聚体靠近其FMN辅因子的表面相互作用。使用分子动力学模拟对最低能量复合物进行优化,结果显示两种蛋白表面之间存在非常紧密的相互作用,Rd残基(但不是直接的铁中心)与ROO的FMN辅因子直接接触的可能性很高。静电相互作用和范德华相互作用都对复合物的最终能量有贡献。在这些复合物中,复合物形成的主要贡献是Rd的酸性残基与ROO的碱性残基之间的极性相互作用,以及不同基团之间大量的非极性相互作用。确定了这一过程中的重要残基。在优化的最低能量复合物中,ET估计(使用途径模型)表明这些构型对于电子转移是有效的。结合分子建模结果分析了动力学对离子强度的实验钟形依赖性,并讨论了这种现象分子基础的假设。