Nelson D J, Yeagle P L, Miller T L, Martin R B
Bioinorg Chem. 1976;5(4):353-8. doi: 10.1016/s0006-3061(00)80295-1.
Chemical shifts occurring in carbon-13 magnetic resonance spectroscopy are utilized to assess the site of complexation of nucleosides to enPdC12 in neutral aqueous solutions. Binding occurs at N3 in cytidine, thymidine, and uridien, at N7 in 1-methylguanosine, and at N1 in guanosine. For most carbon atoms adjacent to N3 in the pyrimidine nucleosides the complexation shifts of the basic ligand are about 30% of the corresponding upfield protonation shifts. All complexes are of the form enPdL2 indicating that the ligands are unidentate and that the tendency to chelation is weak. Carbon-13 magnetic resonance spectroscopy appears to be the best method for delineating these complexes in solution. Due to the high avidity of chloride ion for Pt(II), cis dichloro Pd(II) complexes may be better models for intracellular action of the corresponding Pt(II) complexes than the Pt(II) complexes themselves.
碳-13磁共振波谱中出现的化学位移被用于评估核苷在中性水溶液中与乙二胺合钯(II)氯化物络合的位点。胞苷、胸苷和尿苷在N3处发生结合,1-甲基鸟苷在N7处发生结合,鸟苷在N1处发生结合。对于嘧啶核苷中与N3相邻的大多数碳原子,碱性配体的络合位移约为相应的高场质子化位移的30%。所有络合物均为enPdL2形式,表明配体是单齿的,螯合倾向较弱。碳-13磁共振波谱似乎是描绘溶液中这些络合物的最佳方法。由于氯离子对铂(II)的高亲和力,顺式二氯钯(II)络合物可能比相应的铂(II)络合物本身更适合作为细胞内作用的模型。