Coupez Bernard, Wipff Georges
Laboratoire MSM, UMR CNRS 7551, Institut de Chimie, 4, rue B. Pascal, 67 000 Strasbourg, France.
Inorg Chem. 2003 Jun 2;42(11):3693-703. doi: 10.1021/ic0341082.
We report a quantum mechanical study on the complexes of UO(2)(2+) with diamide ligands L of malonamide and succinamide type, respectively, forming 6- and 7-chelate rings in their bidentate coordination to uranium. The main aims are to (i) assess how strong the chelate effect is (i.e., the preference for bi- versus monodentate binding modes of L), (ii) compare these ligands as a function of the chelate ring size, and (iii) assess the role of neutralizing counterions. For this purpose, we consider UO(2)L(2+), UO(2)L(2)(2+), UO(2)L(3)(2+), and UO(2)X(2)L type complexes with X(-) = Cl(-) versus NO(3)(-). Hartree-Fock and DFT calculations lead to similar trends and reveal the importance of saturation and steric repulsions ("strain") in the first coordination sphere. In the unsaturated UO(2)L(2+), UO(2)L(2)(2+), and UO(2)Cl(2)L complexes, the 7-ring chelate is preferred over the 6-ring chelate, and bidentate coordination is preferred over the monodentate one. However, in the saturated UO(2)(NO(3))(2)L complexes, the 6- and 7-chelating ligands have similar binding energies, and for a given ligand, the mono- and bidentate binding modes are quasi-isoenergetic. These conclusions are confirmed by the calculations of free energies of complexation in the gas phase. In condensed phases, the monodentate form of UO(2)X(2)L complexes should be further stabilized by coordination of additional ligands, as well as by interactions (e.g., hydrogen bonding) of the "free" carbonyl oxygen, leading to an enthalpic preference for this form, compared to the bidentate one. We also considered an isodesmic reaction exchanging one bidentate ligand L with two monoamide analogues, which reveals that the latter are clearly preferred (by 23-14 kcal/mol at the HF level and 24-12 kcal/mol at the DFT level). Thus, in the gas phase, the studied bidentate ligands are enthalpically disfavored, compared to bis-monodentate analogues. The contrast with trends observed in solution hints at the importance of "long range" forces (e.g., second shell interactions) and entropy effects on the chelate effect in condensed phases.
我们报道了一项关于UO₂²⁺与丙二酰胺和琥珀酰胺类型的二酰胺配体L形成的配合物的量子力学研究,这些配体在与铀的双齿配位中分别形成6元和7元螯合环。主要目的是:(i)评估螯合效应有多强(即L对双齿与单齿结合模式的偏好);(ii)比较这些配体作为螯合环大小的函数;(iii)评估中和抗衡离子的作用。为此,我们考虑了UO₂L²⁺、UO₂L₂²⁺、UO₂L₃²⁺和UO₂X₂L型配合物,其中X⁻ = Cl⁻ 与NO₃⁻。哈特里 - 福克和密度泛函理论计算得出了相似的趋势,并揭示了第一配位层中饱和度和空间排斥(“应变”)的重要性。在不饱和的UO₂L²⁺、UO₂L₂²⁺和UO₂Cl₂L配合物中,7元环螯合物比6元环螯合物更受青睐,双齿配位比单齿配位更受青睐。然而,在饱和的UO₂(NO₃)₂L配合物中,6元和7元螯合配体具有相似的结合能,对于给定的配体,单齿和双齿结合模式几乎等能。这些结论通过气相中络合自由能的计算得到了证实。在凝聚相中,UO₂X₂L配合物的单齿形式应通过额外配体的配位以及“游离”羰基氧的相互作用(如氢键)进一步稳定,与双齿形式相比,导致对这种形式的焓偏好。我们还考虑了一个等键反应,用两个单酰胺类似物交换一个双齿配体L,这表明后者明显更受青睐(在HF水平下相差23 - 14 kcal/mol,在DFT水平下相差24 - 12 kcal/mol)。因此,在气相中,与双单齿类似物相比,所研究的双齿配体在焓上不利。与在溶液中观察到的趋势的对比暗示了“长程”力(如第二配位层相互作用)和熵效应在凝聚相中对螯合效应的重要性。