Abarca Angel, Galakhov Mikhail V, Gracia José, Martín Avelino, Mena Miguel, Poblet Josep-M, Sarasa José P, Yélamos Carlos
Departamento de Química Inorgánica Universidad de Alcalá Campus Universitario, 28871 Alcalá de Henares-Madrid, Spain.
Chemistry. 2003 May 23;9(10):2337-46. doi: 10.1002/chem.200204593.
Treatment of [Ti(eta(5)-C(5)Me(5))(micro-NH)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [Cl(2)(ArN)Ti)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [Cl(2)Ti(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [Cl(2)(tBuN)M(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [Cl(2)(ArN)M(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [Mmicro(3)-N)(2)(micro(3)-NH)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)]Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [Ti(eta(5)-C(5)Me(5))(micro-NH)(micro(3)-N)] (1) and (micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]. Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.
在甲苯中,将[Ti(η⁵-C₅Me₅)(μ-NH)(μ₃-N)] (1) 与亚氨基配合物[Ti(NAr)Cl₂(py)₃] (Ar = 2,4,6-C₆H₂Me₃) 和[Ti(NtBu)Cl₂(py)₃]反应,分别得到单氮杂钛立方烷[Cl₂(ArN)Ti(₃)[Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)]].(C₇H₈) (2.C₇H₈) 和[Cl₂Ti(₂)(μ₃-NH)[Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)]] (3)。配合物1与铌和钽的亚氨基衍生物[M(NtBu)(NHtBu)Cl₂(NH₂tBu)] (M = Nb, Ta) 在甲苯中进行类似反应,得到单氮杂异金属立方烷[Cl₂(tBuN)M(μ₃-NH)(₂)[Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)]] (M = Nb (4), Ta (5)),这两种配合物与2,4,6-三甲基苯胺反应,生成类似的物种[Cl₂(ArN)M(μ₃-NH)(₂)[Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)]].(C₇H₈) (Ar = 2,4,6-C₆H₂Me₃, M = Nb (6.C₇H₈), Ta (7.C₇H₈))。同样,氮杂双立方烷[Mμ₃-N)(₂)(μ₃-NH)Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)].2C₇H₈ [M = Ti (8.2C₇H₈), Zr (9.2C₇H₈)] 和[M[(μ₃-N)(₅)(μ₃-NH)]Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)].2 C₇H₈ (Nb (10.2C₇H₈), Ta (11.2C₇H₈)) 是在150℃下,由1与均配二甲基氨基配合物[M(NMe₂)(ₓ)] (x = 4, M = Ti, Zr; x = 5, M = Nb, Ta) 在甲苯中制备得到的。对6和10进行了X射线晶体结构测定,结果分别显示为立方体型和双立方体型核心。对于配合物2和4 - 7,我们通过二维核磁共振观察并研究了有机金属配体[Ti(η⁵-C₅Me₅)(μ-NH)(μ₃-N)] (1) 和(μ₃-N)(μ₃-NH)(₂)[Ti₃(η⁵-C₅Me₅)(₃)(μ₃-N)] 的旋转或三角扭转。对2、3和8的模型配合物进行了密度泛函理论计算,以确定并理解它们的结构。