Beyer P., Benkadda S.
Equipe Dynamique des Systemes Complexes, LPIIM, CNRS-Universite de Provence, Centre de St. Jerome, Case 321, 13397 Marseille Cedex 20, France.
Chaos. 2001 Dec;11(4):774-779. doi: 10.1063/1.1406538.
A statistical analysis of the advection of passive particles in a flow governed by driven two-dimensional Navier-Stokes equations (Kolmogorov flow) is presented. Different regimes are studied, all corresponding to a chaotic behavior of the flow. The diffusion is found to be strongly asymmetric with a very weak transport perpendicular to the forcing direction. The trajectories of the particles are characterized by the presence of traps and flights. The trapping time distributions show algebraic decrease, and strong anomalous diffusion is observed in transient phases. Different regimes lead to different types of diffusion, i.e., no universal behavior of diffusion is observed, and both time and space properties are needed to define anomalous transport. (c) 2001 American Institute of Physics.
本文给出了由驱动二维纳维-斯托克斯方程(柯尔莫哥洛夫流)控制的流场中被动粒子平流的统计分析。研究了不同的流态,所有流态均对应于流场的混沌行为。发现扩散具有很强的不对称性,垂直于强迫方向的输运非常微弱。粒子的轨迹具有陷阱和飞行的特征。捕获时间分布呈代数衰减,并且在瞬态阶段观察到强烈的反常扩散。不同的流态导致不同类型的扩散,即未观察到扩散的普遍行为,并且需要时间和空间特性来定义反常输运。(c)2001美国物理研究所。