Bar Markus, Meron Ehud, Utzny Clemens
Max-Planck-Institut fur Physik Komplexer Systeme, Nothnitzer Strasse 38, 01187 Dresden, Germany.
Chaos. 2002 Mar;12(1):204-214. doi: 10.1063/1.1450565.
We review experimental and theoretical work addressing pattern formation on anisotropic and heterogeneous catalytic surfaces. These systems are typically modeled by reaction-diffusion equations reflecting the kinetics and transport of the involved chemical species. Here, we demonstrate the influence of anisotropy and heterogeneity in a simplified model, the FitzHugh-Nagumo equations. Anisotropy causes stratification of labyrinthine patterns and spiral defect chaos in bistable media. For heterogeneous media, we study the situation where the heterogeneity appears on a length scale shorter than the typical pattern length scale. Homogenization, i.e., computation of effective medium properties, is applied to an example and illustrated with simulations in one (fronts) and two dimensions (spirals). We conclude with a discussion of open questions and promising directions that comprise the coupling of the microscopic structure of the surface to the macroscopic concentration patterns and the fabrication of nanostructures with heterogeneous surfaces as templates. (c) 2002 American Institute of Physics.
我们回顾了关于各向异性和非均匀催化表面上图案形成的实验和理论研究工作。这些系统通常由反映所涉及化学物质动力学和输运的反应扩散方程来建模。在此,我们在一个简化模型——菲茨休 - 纳古莫方程中展示各向异性和非均匀性的影响。各向异性会导致双稳介质中迷宫图案的分层以及螺旋缺陷混沌。对于非均匀介质,我们研究了非均匀性出现在比典型图案长度尺度更短的长度尺度上的情况。将均匀化,即有效介质性质的计算,应用于一个示例,并通过一维(前沿)和二维(螺旋)模拟进行说明。我们最后讨论了一些开放性问题和有前景的方向,包括表面微观结构与宏观浓度图案的耦合以及以非均匀表面为模板制造纳米结构。(c)2002美国物理研究所。