Stamp A. T., Osipov G. V., Collins J. J.
Center for BioDynamics and Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215.
Chaos. 2002 Sep;12(3):931-940. doi: 10.1063/1.1500495.
Recent findings indicate that ventricular fibrillation might arise from spiral wave chaos. Our objective in this computational study was to investigate wave interactions in excitable media and to explore the feasibility of using overdrive pacing to suppress spiral wave chaos. This work is based on the finding that in excitable media, propagating waves with the highest excitation frequency eventually overtake all other waves. We analyzed the effects of low-amplitude, high-frequency pacing in one-dimensional and two-dimensional networks of coupled, excitable cells governed by the Luo-Rudy model. In the one-dimensional cardiac model, we found narrow high-frequency regions of 1:1 synchronization between the input stimulus and the system's response. The frequencies in this region were higher than the intrinsic spiral wave frequency of cardiac tissue. When we paced the two-dimensional cardiac model with frequencies from this region, we found that spiral wave chaos could, in some cases, be suppressed. When we coupled the overdrive pacing with calcium channel blockers, we found that spiral wave chaos could be suppressed in all cases. These findings suggest that low-amplitude, high-frequency overdrive pacing, in combination with calcium channel inhibitors (e.g., class II or class IV antiarrhythmic drugs), may be useful for eliminating fibrillation. (c) 2002 American Institute of Physics.
最近的研究结果表明,心室颤动可能源于螺旋波混沌。我们在这项计算研究中的目标是研究可兴奋介质中的波相互作用,并探索使用超速起搏来抑制螺旋波混沌的可行性。这项工作基于这样一个发现:在可兴奋介质中,具有最高兴奋频率的传播波最终会超过所有其他波。我们分析了由Luo-Rudy模型控制的一维和二维耦合可兴奋细胞网络中低振幅、高频起搏的影响。在一维心脏模型中,我们发现输入刺激与系统响应之间存在1:1同步的狭窄高频区域。该区域的频率高于心脏组织的固有螺旋波频率。当我们用该区域的频率对二维心脏模型进行起搏时,我们发现在某些情况下螺旋波混沌可以被抑制。当我们将超速起搏与钙通道阻滞剂联合使用时,我们发现在所有情况下螺旋波混沌都可以被抑制。这些发现表明,低振幅、高频超速起搏与钙通道抑制剂(如II类或IV类抗心律失常药物)联合使用,可能有助于消除颤动。(c)2002美国物理研究所。