El G. A., Grimshaw R. H. J.
School of Mathematical and Information Sciences, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom.
Chaos. 2002 Dec;12(4):1015-1026. doi: 10.1063/1.1507381.
We study the long-time evolution of the trailing shelves that form behind solitary waves moving through an inhomogeneous medium, within the framework of the variable-coefficient Korteweg-de Vries equation. We show that the nonlinear evolution of the shelf leads typically to the generation of an undular bore and an expansion fan, which form apart but start to overlap and nonlinearly interact after a certain time interval. The interaction zone expands with time and asymptotically as time goes to infinity occupies the whole perturbed region. Its oscillatory structure strongly depends on the sign of the inhomogeneity gradient of the variable background medium. We describe the nonlinear evolution of the shelves in terms of exact solutions to the KdV-Whitham equations with natural boundary conditions for the Riemann invariants. These analytic solutions, in particular, describe the generation of small "secondary" solitary waves in the trailing shelves, a process observed earlier in various numerical simulations. (c) 2002 American Institute of Physics.
我们在变系数科特韦格 - 德弗里斯方程的框架下,研究了在非均匀介质中移动的孤立波后面形成的尾迹架的长时间演化。我们表明,尾迹架的非线性演化通常会导致产生一个波状涌潮和一个膨胀波,它们起初相互分离,但在一定时间间隔后开始重叠并发生非线性相互作用。相互作用区域随时间扩展,并且当时间趋于无穷时渐近地占据整个扰动区域。其振荡结构强烈依赖于可变背景介质的不均匀性梯度的符号。我们根据具有黎曼不变量自然边界条件的KdV - 惠特姆方程的精确解来描述尾迹架的非线性演化。这些解析解特别描述了尾迹架中小的“次级”孤立波的产生,这一过程在早期的各种数值模拟中已被观察到。(c)2002美国物理研究所。