Suppr超能文献

时空系统子系统李雅普诺夫指数的标度与交织

Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems.

作者信息

Carretero-Gonzalez R., Orstavik S., Huke J., Broomhead D. S., Stark J.

机构信息

Centre for Nonlinear Dynamics and its Applications, University College, London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

Chaos. 1999 Jun;9(2):466-482. doi: 10.1063/1.166420.

Abstract

The computation of the entire Lyapunov spectrum for extended dynamical systems is a very time consuming task. If the system is in a chaotic spatio-temporal regime it is possible to approximately reconstruct the Lyapunov spectrum from the spectrum of a subsystem by a suitable rescaling in a very cost effective way. We compute the Lyapunov spectrum for the subsystem by truncating the original Jacobian without modifying the original dynamics and thus taking into account only a portion of the information of the entire system. In doing so we notice that the Lyapunov spectra for consecutive subsystem sizes are interleaved and we discuss the possible ways in which this may arise. We also present a new rescaling method, which gives a significantly better fit to the original Lyapunov spectrum. We evaluate the performance of our rescaling method by comparing it to the conventional rescaling (dividing by the relative subsystem volume) for one- and two-dimensional lattices in spatio-temporal chaotic regimes. Finally, we use the new rescaling to approximate quantities derived from the Lyapunov spectrum (largest Lyapunov exponent, Lyapunov dimension, and Kolmogorov-Sinai entropy), finding better convergence as the subsystem size is increased than with conventional rescaling. (c) 1999 American Institute of Physics.

摘要

计算扩展动力系统的整个李雅普诺夫谱是一项非常耗时的任务。如果系统处于混沌时空状态,则可以通过适当的重新缩放,以非常经济高效的方式从子系统的谱近似重构李雅普诺夫谱。我们通过截断原始雅可比矩阵来计算子系统的李雅普诺夫谱,而不改变原始动力学,从而仅考虑整个系统信息的一部分。在此过程中,我们注意到连续子系统大小的李雅普诺夫谱是交错的,并讨论了这种情况可能出现的方式。我们还提出了一种新的重新缩放方法,它能更好地拟合原始李雅普诺夫谱。我们通过将我们的重新缩放方法与时空混沌状态下一维及二维晶格的传统重新缩放(除以相对子系统体积)进行比较,来评估我们重新缩放方法的性能。最后,我们使用新的重新缩放来近似从李雅普诺夫谱导出的量(最大李雅普诺夫指数、李雅普诺夫维数和柯尔莫哥洛夫 - 西奈熵),发现随着子系统大小增加,与传统重新缩放相比,收敛性更好。(c) 1999美国物理研究所。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验