Suppr超能文献

颗粒物料在溜槽流中的混合与离析。

Mixing and segregation of granular materials in chute flows.

作者信息

Khakhar D. V., McCarthy J. J., Ottino J. M.

机构信息

Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India.

出版信息

Chaos. 1999 Sep;9(3):594-610. doi: 10.1063/1.166433.

Abstract

Mixing of granular solids is invariably accompanied by segregation, however, the fundamentals of the process are not well understood. We analyze density and size segregation in a chute flow of cohesionless spherical particles by means of computations and theory based on the transport equations for a mixture of nearly elastic particles. Computations for elastic particles (Monte Carlo simulations), nearly elastic particles, and inelastic, frictional particles (particle dynamics simulations) are carried out. General expressions for the segregation fluxes due to pressure gradients and temperature gradients are derived. Simplified equations are obtained for the limiting cases of low volume fractions (ideal gas limit) and equal sized particles. Theoretical predictions of equilibrium number density profiles are in good agreement with computations for mixtures of equal sized particles with different density for all solids volume fractions, and for mixtures of different sized particles at low volume fractions (nu<0.2), when the particles are elastic or nearly elastic. In the case of inelastic, frictional particles the theory gives reasonable predictions if an appropriate effective granular temperature is assumed. The relative importance of pressure diffusion and temperature diffusion for the cases considered is discussed. (c) 1999 American Institute of Physics.

摘要

颗粒状固体的混合总是伴随着分离现象,然而,该过程的基本原理尚未得到很好的理解。我们通过基于近弹性颗粒混合物的输运方程的计算和理论,分析了无粘性球形颗粒在斜槽流中的密度和尺寸分离。对弹性颗粒(蒙特卡罗模拟)、近弹性颗粒以及非弹性、有摩擦颗粒(颗粒动力学模拟)进行了计算。推导了由压力梯度和温度梯度引起的分离通量的一般表达式。针对低体积分数(理想气体极限)和等尺寸颗粒的极限情况,得到了简化方程。对于所有固体体积分数下不同密度的等尺寸颗粒混合物,以及低体积分数(ν<0.2)下不同尺寸颗粒的混合物,当颗粒为弹性或近弹性时,平衡数密度分布的理论预测与计算结果吻合良好。对于非弹性、有摩擦颗粒的情况,如果假设一个合适的有效颗粒温度,理论能给出合理的预测。讨论了在所考虑情况下压力扩散和温度扩散的相对重要性。(c)1999美国物理研究所。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验