Lazar Attila, Noszticzius Zoltan, Farkas Henrik, Forsterling Horst-Dieter
Center for Complex and Nonlinear Systems and the Department of Chemical Physics, Technical University of Budapest, H-1521 Budapest, HungaryFachbereich Physikalische Chemie, Philipps Universitat Marburg, D-35032 Marburg/Lahn, Germany.
Chaos. 1995 Jun;5(2):443-447. doi: 10.1063/1.166115.
According to earlier theories certain parts of a chemical wave front propagating in a 2-D excitable medium with a convex obstacle should be involutes of that obstacle. The present paper discusses a special case where self-sustained chemical waves are rotating around a central obstacle in an annular 2-D excitable region. A simple geometrical model of wave propagation based on the Fermat principle (minimum propagation time) is suggested. Applying this model it is shown that the wave fronts in the case of an annular excitable region should be purely involutes of the central obstacle in the asymptotic state. This theory is supported by experiments in a novel membrane reactor where a catalyst of the Belousov-Zhabotinsky reaction is fixed on a porous membrane combined with a gel medium. Involutes of circular and triangular obstacles are observed experimentally. Deviations from the ideal involute geometry are explained by inhomogeneities in the membrane. (c) 1995 American Institute of Physics.
根据早期理论,在具有凸形障碍物的二维可激发介质中传播的化学波前的某些部分应为该障碍物的渐开线。本文讨论了一种特殊情况,即自持化学波在环形二维可激发区域中围绕中心障碍物旋转。提出了一种基于费马原理(传播时间最短)的波传播简单几何模型。应用该模型表明,在环形可激发区域的情况下,波前在渐近状态下应为中心障碍物的纯渐开线。这一理论得到了一个新型膜反应器实验的支持,在该反应器中,贝洛索夫 - 扎博廷斯基反应的催化剂固定在与凝胶介质结合的多孔膜上。实验观察到了圆形和三角形障碍物的渐开线。膜中的不均匀性解释了与理想渐开线几何形状的偏差。(c) 1995美国物理研究所。