Wabuyele Musundi B, Farquar Hannah, Stryjewski Wieslaw, Hammer Robert P, Soper Steven A, Cheng Yu-Wei, Barany Francis
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
J Am Chem Soc. 2003 Jun 11;125(23):6937-45. doi: 10.1021/ja034716g.
The aim of this study was to develop new strategies for analyzing molecular signatures of disease states approaching real-time using single pair fluorescence resonance energy transfer (spFRET) to rapidly detect point mutations in unamplified genomic DNA. In addition, the detection process was required to discriminate between normal and mutant (minority) DNAs in heterogeneous populations. The discrimination was carried out using allele-specific primers, which flanked the point mutation in the target gene and were ligated using a thermostable ligase enzyme only when the genomic DNA carried this mutation. The allele-specific primers also carried complementary stem structures with end-labels (donor/acceptor fluorescent dyes, Cy5/Cy5.5, respectively), which formed a molecular beacon following ligation. We coupled ligase detection reaction (LDR) with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the molecular beacon probes formed upon ligation. LDR-spFRET provided the necessary specificity and sensitivity to detect single-point mutations in as little as 600 copies of human genomic DNA directly without PCR at a level of 1 mutant per 1000 wild type sequences using 20 LDR thermal cycles. We also demonstrate the ability to rapidly discriminate single base differences in the K-ras gene in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA (600 copies). Real-time LDR-spFRET detection of point mutations in the K-ras gene was accomplished in PMMA microfluidic devices using sheath flows.
本研究的目的是开发新策略,利用单对荧光共振能量转移(spFRET)实时分析疾病状态的分子特征,以快速检测未扩增基因组DNA中的点突变。此外,检测过程需要区分异质群体中的正常DNA和突变(少数)DNA。这种区分是使用等位基因特异性引物进行的,这些引物位于靶基因点突变的两侧,并且只有当基因组DNA携带该突变时,才会使用热稳定连接酶进行连接。等位基因特异性引物还带有带有末端标记(分别为供体/受体荧光染料,Cy5/Cy5.5)的互补茎结构,连接后形成分子信标。我们将连接酶检测反应(LDR)与spFRET相结合,以鉴定K-ras癌基因第12密码子中的单个碱基突变,该突变对结直肠癌具有很高的诊断价值。一个简单的基于二极管激光的荧光系统能够检测经历FRET的单个荧光分子,用于检测连接后形成的分子信标探针产生的光子爆发。LDR-spFRET提供了必要的特异性和灵敏度,能够在不进行PCR的情况下,直接检测低至600份人类基因组DNA中的单点突变,在每1000个野生型序列中有1个突变体的水平下,使用20个LDR热循环。我们还证明了仅使用基因组DNA(600份)的单个LDR热循环,能够在不到5分钟的时间内,以每十份正常样本中有1份突变DNA的频率,快速区分K-ras基因中的单个碱基差异。在聚甲基丙烯酸甲酯(PMMA)微流控装置中,使用鞘流实现了K-ras基因点突变的实时LDR-spFRET检测。