Wada Kenji, Pamplin Craig B, Legzdins Peter, Patrick Brian O, Tsyba Irina, Bau Robert
Departments of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1.
J Am Chem Soc. 2003 Jun 11;125(23):7035-48. doi: 10.1021/ja0349094.
CpMo(NO)(CH(2)CMe(3))(2) (1), a complex with alpha-agostic C-H.Mo interactions, evolves neopentane in neat hydrocarbon solutions at room temperature and forms the transient 16-electron alkylidene complex, CpMo(NO)(=CHCMe(3)), which subsequently activates solvent C-H bonds. Thus, it reacts with tetramethylsilane or mesitylene to form CpMo(NO)(CH(2)CMe(3))(CH(2)SiMe(3)) (2) or CpMo(NO)(CH(2)CMe(3))(eta(2)-CH(2)C(6)H(3)-3,5-Me(2)) (3), respectively, in nearly quantitative yields. Under identical conditions, 1 in p-xylene generates a mixture of sp(2) and sp(3) C-H bond activation products, namely CpMo(NO)(CH(2)CMe(3))(C(6)H(3)-2,5-Me(2)) (4, 73%) and CpMo(NO)(CH(2)CMe(3))(eta(2)-CH(2)C(6)H(4)-4-Me) (5, 27%). In benzene at room temperature, 1 transforms to a mixture of CpMo(NO)(CH(2)CMe(3))(C(6)H(5)) (6) and CpMo(NO)(C(6)H(5))(2) (7) in a sequential manner. Most interestingly, the thermal activation of 6 at ambient temperatures gives rise to two parallel modes of reactivity involving either the elimination of benzene and formation of CpMo(NO)(=CHCMe(3)) or the elimination of neopentane and formation of the benzyne complex, CpMo(NO)(eta(2)-C(6)H(4)). In pyridine, these intermediates are trapped as the isolable 18-electron adducts, CpMo(NO)(=CHCMe(3))(NC(5)H(5)) (8) and CpMo(NO)(eta(2)-C(6)H(4))(NC(5)H(5)) (9), and, in hydrocarbon solvents, they effect the intermolecular activation of aliphatic C-H bonds at room temperature to generate mixtures of neopentyl- and phenyl-containing derivatives. However, the distribution of products resulting from the hydrocarbon activations is dependent on the nature of the solvent, probably due to solvation effects and the presence of sigma- or pi-hydrocarbon complexes on the reaction coordinates of the alkylidene and the benzyne intermediates. The results of DFT calculations on these processes in the gas phase support the existence of such hydrocarbon complexes and indicate that better agreement with experimental observations is obtained when the actual neopentyl ligand rather than the simpler methyl ligand is used in the model complexes.
CpMo(NO)(CH(2)CMe(3))(2)(1)是一种具有α-配位C-H·Mo相互作用的配合物,在室温下于纯烃溶液中会释放新戊烷,并形成瞬态16电子亚烷基配合物CpMo(NO)(=CHCMe(3)),该配合物随后会活化溶剂中的C-H键。因此,它与四甲基硅烷或均三甲苯反应,分别以几乎定量的产率形成CpMo(NO)(CH(2)CMe(3))(CH(2)SiMe(3))(2)或CpMo(NO)(CH(2)CMe(3))(η(2)-CH(2)C(6)H(3)-3,5-Me(2))(3)。在相同条件下,对二甲苯中的1会生成sp(2)和sp(3) C-H键活化产物的混合物,即CpMo(NO)(CH(2)CMe(3))(C(6)H(3)-2,5-Me(2))(4,73%)和CpMo(NO)(CH(2)CMe(3))(η(2)-CH(2)C(6)H(4)-4-Me)(5,27%)。在室温下于苯中,1会依次转化为CpMo(NO)(CH(2)CMe(3))(C(6)H(5))(6)和CpMo(NO)(C(6)H(5))(2)(7)的混合物。最有趣的是,6在环境温度下的热活化会产生两种平行的反应模式,要么消除苯并形成CpMo(NO)(=CHCMe(3)),要么消除新戊烷并形成苯炔配合物CpMo(NO)(η(2)-C(6)H(4))。在吡啶中,这些中间体被捕获为可分离的18电子加合物CpMo(NO)(=CHCMe(3))(NC(5)H(5))(8)和CpMo(NO)(η(2)-C(6)H(4))(NC(5)H(5))(9),并且在烃类溶剂中,它们在室温下会影响脂肪族C-H键的分子间活化,生成含新戊基和苯基衍生物的混合物。然而,烃类活化产生的产物分布取决于溶剂的性质,这可能是由于溶剂化效应以及亚烷基和苯炔中间体反应坐标上存在σ-或π-烃配合物。对这些气相过程的密度泛函理论计算结果支持了此类烃配合物的存在,并表明当在模型配合物中使用实际的新戊基配体而非更简单的甲基配体时,与实验观察结果能更好地吻合。