Plaut Emmanuel
LEMTA, INPL-UHP-CNRS, 2 Avenue de la Forêt de Haye, F-54504 Vandoeuvre Cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 2):046303. doi: 10.1103/PhysRevE.67.046303. Epub 2003 Apr 15.
Motivated by the experimental results of Liu and Ecke (1997, 1999), different models are developed to analyze the weakly nonlinear dynamics of the traveling-wave sidewall modes appearing in rotating Rayleigh-Bénard convection. These models assume fully rigid boundary conditions for the velocity field. At the linear level, this influences most strongly the critical frequencies: they appear to be proportional to the logarithm of the Coriolis number, which is twice the inverse of the Ekman number. An annular flow domain is considered. This multiply connected geometry is shown to lead generally to the existence of a global mean-flow mode proportional to the average, over the azimuthal coordinate, of the square of the modulus of the envelope of the waves. Because this mode feeds back on the active wave modes at cubic order, the resulting Ginzburg-Landau envelope equation contains a nonlocal term. This new term, however, vanishes in the large-gap limit relevant to the experiments of Liu and Ecke. As compared with previous theoretical work, the present models lead to reduced discrepancies with the results of these experiments concerning the coefficients of the envelope equation. It is also shown that the new nonlocal effects may be realized experimentally in a small-gap annular geometry if a small-Prandtl-number fluid is used, despite the fact that no regime of Benjamin-Feir instability is predicted to occur.
受Liu和Ecke(1997年、1999年)实验结果的启发,人们开发了不同的模型来分析旋转瑞利 - 贝纳德对流中出现的行波侧壁模式的弱非线性动力学。这些模型假设速度场具有完全刚性的边界条件。在线性层面,这对临界频率的影响最为强烈:它们似乎与科里奥利数的对数成正比,而科里奥利数是埃克曼数的倒数的两倍。考虑了一个环形流动区域。这种多重连通几何结构通常会导致存在一种全局平均流模式,该模式与波包络模量平方在方位角坐标上的平均值成正比。由于该模式以三次方阶数反馈到有源波模式上,因此得到的金兹堡 - 朗道包络方程包含一个非局部项。然而,在与Liu和Ecke的实验相关的大间隙极限情况下,这个新项会消失。与之前的理论工作相比,当前模型在包络方程系数方面与这些实验结果的差异有所减小。研究还表明,如果使用小普朗特数流体,尽管预计不会出现本杰明 - 费尔不稳定性状态,但新的非局部效应可以在小间隙环形几何结构中通过实验实现。