Onorato Miguel, Osborne Alfred, Fedele Renato, Serio Marina
Dipartimento di Fisica Generale, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 2):046305. doi: 10.1103/PhysRevE.67.046305. Epub 2003 Apr 21.
We study the modulational instability in surface gravity waves with random phase spectra. Starting from the nonlinear Schrödinger equation and using the Wigner-Moyal transform, we study the stability of the narrow-banded approximation of a typical wind-wave spectrum, i.e., the JONSWAP spectrum. By performing numerical simulations of the nonlinear Schrödinger equation we show that in the unstable regime, the nonlinear stage of the modulational instability is responsible for the formation of coherent structures. Furthermore, a Landau-type damping, due to the incoherence of the waves, whose role is to provide a stabilizing effect against the modulational instability, is both analytically and numerically discussed.
我们研究具有随机相位谱的表面重力波中的调制不稳定性。从非线性薛定谔方程出发,利用维格纳 - 莫亚尔变换,我们研究了典型风浪谱(即JONSWAP谱)的窄带近似的稳定性。通过对非线性薛定谔方程进行数值模拟,我们表明在不稳定区域,调制不稳定性的非线性阶段导致了相干结构的形成。此外,还通过解析和数值方法讨论了由于波的非相干性引起的朗道型阻尼,其作用是对调制不稳定性提供稳定效应。