Suppr超能文献

最佳神经速率编码导致双峰放电率分布。

Optimal neural rate coding leads to bimodal firing rate distributions.

作者信息

Bethge M, Rotermund D, Pawelzik K

机构信息

Institute of Theoretical Physics, University Bremen, Otto-Hahn-Alle, D-28334, Germany.

出版信息

Network. 2003 May;14(2):303-19.

Abstract

Many experimental studies concerning the neuronal code are based on graded responses of neurons, given by the emitted number of spikes measured in a certain time window. Correspondingly, a large body of neural network theory deals with analogue neuron models and discusses their potential use for computation or function approximation. All physical signals, however, are of limited precision, and neuronal firing rates in cortex are relatively low. Here, we investigate the relevance of analogue signal processing with spikes in terms of optimal stimulus reconstruction and information theory. In particular, we derive optimal tuning functions taking the biological constraint of limited firing rates into account. It turns out that depending on the available decoding time T, optimal encoding undergoes a phase transition from discrete binary coding for small T towards analogue or quasi-analogue encoding for large T. The corresponding firing rate distributions are bimodal for all relevant T, in particular in the case of population coding.

摘要

许多关于神经元编码的实验研究都是基于神经元的分级反应,这种反应由在特定时间窗口内测量的发放脉冲数量给出。相应地,大量的神经网络理论涉及模拟神经元模型,并讨论它们在计算或函数逼近方面的潜在用途。然而,所有物理信号的精度都是有限的,并且皮层中的神经元发放率相对较低。在这里,我们从最优刺激重建和信息论的角度研究用脉冲进行模拟信号处理的相关性。特别是,我们推导了考虑到发放率有限这一生物学约束的最优调谐函数。结果表明,根据可用的解码时间T,最优编码会经历一个相变,从小T时的离散二进制编码转变为大T时的模拟或准模拟编码。对于所有相关的T,相应的发放率分布都是双峰的,特别是在群体编码的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验