Getz Gad, Gal Hilah, Kela Itai, Notterman Daniel A, Domany Eytan
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.
Bioinformatics. 2003 Jun 12;19(9):1079-89. doi: 10.1093/bioinformatics/btf876.
We present and review coupled two-way clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.
Free, at http://ctwc.weizmann.ac.il..
http://www.weizmann.ac.il/physics/complex/compphys/bioinfo2/
我们提出并回顾了双向耦合聚类,这是一种用于挖掘基因表达数据的方法。该方法可识别总表达矩阵的子矩阵,对其进行聚类分析可揭示样本(和基因)被划分到生物学相关类别中的情况。我们利用结肠癌和乳腺癌的数据证明,我们能够识别出标准聚类分析无法发现的划分。
免费获取,网址为http://ctwc.weizmann.ac.il..
http://www.weizmann.ac.il/physics/complex/compphys/bioinfo2/