Suppr超能文献

Evaluation of an EIT reconstruction algorithm using finite difference human thorax models as phantoms.

作者信息

Patterson Robert P, Zhang Jie

机构信息

Biomedical Engineering Institute, and Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Physiol Meas. 2003 May;24(2):467-75. doi: 10.1088/0967-3334/24/2/357.

Abstract

A finite difference model of the human thorax with 113,400 control volumes (nodes) based on ECG gated MRI images was used to evaluate the Sheffield DAS-01P EIT system. Sixteen simulated electrode positions equally spaced around the thorax model at approximately the fourth intercostals space level were selected. Pairs of adjacent positions were excited sequentially by injecting current in a manner similar to that used by the Sheffield DAS-01P EIT system. The resulting voltages on the non-excited electrode positions were calculated and used to reconstruct the image using the Sheffield filtered back projection algorithm. By changing the resistivities of the lungs, the ventricles and the atria over a range of 1% to 40%, the resulting changes in the images were quantified by measuring the average resistivity change over a region defined automatically by two thresholds, 40% or 80% of the average of the first four pixels with the largest change. The results show that the changes observed in the images are consistently less than the changes in the model, but changed in a nearly linear manner as a function of resistivity in the model. For 40% resistivity changes in the model for right lung, right ventricle and right atrium, the observed resistivity changes in the region of interest (ROI, defined by the 80% threshold) of the images are 32% for the right lung, 11% for the right ventricle and 5.5% for the right atrium, which suggests strong volume dependence of EIT imaging. The effect of structural (size) change between end diastole and end systole was also studied, which showed large resistivity changes caused in the heart region of the constructed image. The study demonstrates that the Sheffield DAS-01P EIT reconstruction algorithm tracks the change occurring in the lungs most closely and with proper scaling may be used to observe physiological changes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验