Heidbreder Marc, Fröhlich Frederike, Jöhren Olaf, Dendorfer Andreas, Qadri Fatimunnisa, Dominiak Peter
Institute of Experimental and Clinical Pharmacology and Toxicology, University Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
FASEB J. 2003 Aug;17(11):1541-3. doi: 10.1096/fj.02-0963fje. Epub 2003 Jun 3.
The role of the hypoxia-inducible factor (HIF) subunits 1alpha and 1beta in cellular response to hypoxia is well established, whereas little is known about HIF-2alpha and HIF-3alpha with respect to organ distribution and transcriptional regulation by hypoxia. We investigated mRNA levels of all HIF subunits and of their target genes erythropoietin (EPO) and glucose-transporter 1 (GLUT1) in rats undergoing systemic hypoxia for 30 or 120 min by quantitative real-time RT-PCR. In normoxia, persistently high mRNA levels of all HIF subunits were detected in cerebral cortex, hippocampus, and lung; the heart contained the lowest amounts. Hypoxia did not affect mRNA levels of HIF-1alpha, -1beta, and -2alpha. HIF-3alpha mRNA levels increased in all organs examined after 2 h of hypoxia. A significant rise of EPO and GLUT1 mRNA levels occurred in cortex, heart, liver, and kidney after 2 h of hypoxia, indicating activation of the HIF system. Protein levels of all HIF subunits, determined in brain and lung by immunoblotting, showed a marked increase corresponding to the duration of hypoxia. Our results suggest that induction at the transcriptional level is a unique feature of HIF-3alpha, which therefore may represent a rapidly reacting component of the HIF system in protection against hypoxic damage.